【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對角線MN過C點(diǎn),已知AB=3米,AD=2米.

(Ⅰ要使矩形AMPN的面積大于32平方米,則DN的長應(yīng)在什么范圍內(nèi)?

)當(dāng)DN的長為多少時(shí),矩形花壇AMPN的面積最?并求出最小值.

【答案】(1)(0,)∪(6,+∞);(2)當(dāng)DN的長為2米時(shí),矩形AMPN的面積最小,最小值為24平方米

【解析】

試題分析:(1設(shè)出相關(guān)量坐標(biāo),確定該矩形的長和高,進(jìn)而確定其面積,通過解一元二次不等式進(jìn)行求解;(2)利用基本不等式進(jìn)行求解.

試題解析:(1)設(shè)DN的長為x(x>0)米, 則AN=(x+2)米.

,∴AM=,∴SAMPN=AN·AM=,

由SAMPN>32,得>32.

又x>0,得3x2-20x+12>0,解得:0<x< x>6,

即DN長的取值范圍是(0,)∪(6,+∞).

2)矩形花壇AMPN的面積為y=

=3x++12≥2+12=24,

當(dāng)且僅當(dāng)3x=,即x=2時(shí),取得最小值24.

故DN的長為2米時(shí),矩形AMPN的面積最小,最小值為24平方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離散型隨機(jī)變量X的分布列如下:

X

0

1

2

P

x

4x

5x

由此可以得到期望E(X)= , 方差D(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)考試中,小明的成績在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.計(jì)算:
(1)小明在數(shù)學(xué)考試中取得80分以上成績的概率;
(2)小明考試及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教室內(nèi)有一把尺子,無論怎樣放置,地面上總有這樣的直線與該直尺所在直線( )

A. 平行B. 垂直C. 相交D. 異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 a . b 都在平面 外,以下假命題的是(

A.ab b ,則 aB.ab b ,則 a

C.a , b ,則 abD.a b ,則 ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,。

1求證:數(shù)列為等差數(shù)列,并分別寫出關(guān)于的表達(dá)式;

2是否存在自然數(shù),使得?若存在,求出的值;來若不存在,請說明理由。

(3)設(shè),,若不等式成立最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)畢業(yè)生小王相應(yīng)國家自主創(chuàng)業(yè)的號召,利用銀行小額無息貸款開辦了一家飾品店,該店購進(jìn)一種今年新上市的飾品進(jìn)行銷售,飾品的進(jìn)價(jià)為每件40元,售價(jià)為每件60元,每月可賣出300件,市場調(diào)查反映:調(diào)整價(jià)格時(shí),售價(jià)每漲1元每月要少賣10件;售價(jià)每下降1元每月多賣20件,為獲得更大的利潤,現(xiàn)將飾品售價(jià)調(diào)整為(元/件)(即售價(jià)上漲,即售價(jià)下降),每月飾品銷售為(件),月利潤為(元).

(1)直接寫出之間的函數(shù)關(guān)系式;

(2)如何確定銷售價(jià)格才能使月利潤最大?求最大月利潤;

(3)為了使每月利潤不少于6000元,應(yīng)如何控制銷售價(jià)格?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對定義在區(qū)間上的函數(shù),如果對任意,都有成立,那么稱函數(shù)在區(qū)間D上可被替代,D稱為替代區(qū)間.給出以下命題:

在區(qū)間上可被替代;

可被替代的一個(gè)替代區(qū)間;

在區(qū)間可被替代,則

,則存在實(shí)數(shù),使得在區(qū)間上被替代;

其中真命題的有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)當(dāng)為常數(shù),且在區(qū)間變化時(shí),求的最小值;

(2)證明:對任意的,總存在,使得

查看答案和解析>>

同步練習(xí)冊答案