【題目】下列說法正確的是( )
A.命題“若,則”的否命題是“若,則”
B.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題.
C.“”是“”的必要不充分條件
D.若“p或q”為真命題,則p,q至少有一個為真命題
【答案】D
【解析】
對A,根據(jù)否命題的定義判定即可.
對B,先寫出逆命題,再根據(jù)解三角形的性質(zhì)判定即可.
對C,先求出“”的充要條件,再根據(jù)必要與充分條件的定義辨析即可.
對D,根據(jù)復(fù)合命題的真假性判定即可.
對A,命題“若,則”的否命題是“若,則”,故A錯誤.
對B,原命題的逆命題為“在△ABC中,若,則”,根據(jù)正弦定理可知,若,則,則.故逆命題為真命題.故B錯誤.
對C,若,則,解得或.故“”是“”的充分不必要條件條件.故C錯誤.
對D,根據(jù)復(fù)合命題的性質(zhì)可知, 若“p或q”為真命題,則p,q至少有一個為真命題.
故選:D
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①是與的等差中項(xiàng);②是與的等比中項(xiàng);③數(shù)列的前5項(xiàng)和為65這三個條件中任選一個,補(bǔ)充在橫線中,并解答下面的問題.
已知是公差為2的等差數(shù)列,其前項(xiàng)和為,________________________.
(1)求;
(2)設(shè),是否存在,使得?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)把曲線和直線化為直角坐標(biāo)方程;
(2)過原點(diǎn)引一條射線分別交曲線和直線于,兩點(diǎn),射線上另有一點(diǎn)滿足,求點(diǎn)的軌跡方程(寫成直角坐標(biāo)形式的普通方程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是菱形,,平面,,與平面所成的角為,點(diǎn)為的中點(diǎn).
(1)求證:平面平面;
(2)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某總公司在A,B兩地分別有甲、乙兩個下屬公司同種新能源產(chǎn)品(這兩個公司每天都固定生產(chǎn)50件產(chǎn)品),所生產(chǎn)的產(chǎn)品均在本地銷售.產(chǎn)品進(jìn)人市場之前需要對產(chǎn)品進(jìn)行性能檢測,得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進(jìn)人市場.檢測員統(tǒng)計(jì)了甲、乙兩個下屬公司100天的生產(chǎn)情況及每件產(chǎn)品盈利虧損情況,數(shù)據(jù)如表所示:
表1
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件數(shù) | 10 | 10 | 40 | 40 | 50 | |
天數(shù) | 10 | 10 | 10 | 10 | 80 |
表2
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件數(shù) | 10 | 5 | 40 | 45 | 50 | |
天數(shù) | 20 | 10 | 20 | 10 | 70 |
表3
每件正品 | 每件次品 | |
甲公司 | 盈2萬元 | 虧3萬元 |
乙公司 | 盈3萬元 | 虧3.5萬元 |
(1)分別求甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的正品率(用百分?jǐn)?shù)表示).
(2)試問甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的總利潤哪個更大?說明理由.
(3)若以甲公司這100天中每天產(chǎn)品利潤總和對應(yīng)的頻率作為概率,從甲公司這100天隨機(jī)抽取1天,記這天產(chǎn)品利潤總和為X,求X的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)P的極坐標(biāo)為,Q為曲線上的動點(diǎn),求的中點(diǎn)M到曲線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位.已知圓和圓的極坐標(biāo)方程分別是和.
(1)求圓和圓的公共弦所在直線的直角坐標(biāo)方程;
(2)若射線:與圓的交點(diǎn)為O、P,與圓的交點(diǎn)為O、Q,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com