如圖,已知直線與拋物線相切于點)且與軸交于點為坐標原點,定點B的坐標為.

(1)若動點滿足|=,求點的軌跡.
(2)若過點的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點,試求面積之比的取值范圍.

(1) (2)

解析試題分析:解:(I)由,
∴直線的斜率為,
的方程為,∴點A坐標為(1,0)       
設(shè)   則,

整理,得      
∴動點M的軌跡C為以原點為中心,焦點在x軸上,長軸長為,短軸長為2
的橢圓.     
(II)如圖,由題意知直線的斜率存在且不為零,

設(shè)方程為y=k(x-2)(k≠0)①
將①代入,整理,得

.  設(shè)
 ②  
,由此可得
由②知


.∴△OBE與△OBF面積之比的取值范圍是
考點:橢圓的方程
點評:關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當涉及到交點時,常用到根與系數(shù)的關(guān)系式:)。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

經(jīng)過點且與直線相切的動圓的圓心軌跡為.點、在軌跡上,且關(guān)于軸對稱,過線段(兩端點除外)上的任意一點作直線,使直線與軌跡在點處的切線平行,設(shè)直線與軌跡交于點、
(1)求軌跡的方程;
(2)證明:;
(3)若點到直線的距離等于,且△的面積為20,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,過軸上一點的直線與拋物線交于點兩點。
證明,存在唯一一點,使得為常數(shù),并確定點的坐標。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知曲線,曲線,P是平面上一點,若存在過點P的直線與都有公共點,則稱P為“C1—C2型點”.

(1)在正確證明的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線有公共點,求證,進而證明原點不是“C1—C2型點”;
(3)求證:圓內(nèi)的點都不是“C1—C2型點”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系中,已知,直線, 動點的距離是它到定直線距離的倍. 設(shè)動點的軌跡曲線為
(1)求曲線的軌跡方程.
(2)設(shè)點, 若直線為曲線的任意一條切線,且點、的距離分別為,試判斷是否為常數(shù),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的左、右焦點分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為。
(Ⅰ)求橢圓的方程;
(Ⅱ)點是橢圓上除長軸端點外的任一點,連接,設(shè)的角平分線的長軸于點,求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點作斜率為的直線,使與橢圓有且只有一個公共點,設(shè)直線的斜率分別為。若,試證明為定值,并求出這個定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線:的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ) 求拋物線的方程;
(Ⅱ) 當點為直線上的定點時,求直線的方程;
(Ⅲ) 當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個頂點為,焦點在軸上,中心在原點.若右焦點到直線的距離為3.    
(1)求橢圓的標準方程;
(2)設(shè)直線與橢圓相交于不同的兩點.當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點與橢圓的右焦點重合,拋物線的頂點在坐標原點,過點的直線與拋物線交于A,B兩點,
(1)寫出拋物線的標準方程 (2)求⊿ABO的面積最小值

查看答案和解析>>

同步練習冊答案