經(jīng)過點且與直線相切的動圓的圓心軌跡為.點、在軌跡上,且關(guān)于軸對稱,過線段(兩端點除外)上的任意一點作直線,使直線與軌跡在點處的切線平行,設(shè)直線與軌跡交于點、
(1)求軌跡的方程;
(2)證明:;
(3)若點到直線的距離等于,且△的面積為20,求直線的方程.

(1);(2)詳見解析;(3).

解析試題分析:(1)方法1是利用直接法,設(shè)動點坐標(biāo)為,根據(jù)題中條件列式并化簡進而求出動點的軌跡方程;方法2是將問題轉(zhuǎn)化為圓心到定點的距離等于點到定直線的距離,利用拋物線的定義寫出軌跡的方程;(2)由于軸,利用直線與直線的斜率互為相反數(shù)證明;(3)方法1是先將的方程與拋物線的方程聯(lián)立求出點的坐標(biāo),并根據(jù)一些幾何性質(zhì)求出,并將的面積用點的坐標(biāo)表示以便于求出點的坐標(biāo),結(jié)合點的坐標(biāo)求出直線的方程;方法2是利用(2)中的條件與結(jié)論,利用直線確定點和點坐標(biāo)之間的關(guān)系,借助弦長公式求出、,并將的面積用點的坐標(biāo)表示以便于求出點的坐標(biāo),結(jié)合點的坐標(biāo)求出直線的方程.
試題解析:(1)方法1:設(shè)動圓圓心為,依題意得,.        1分
整理,得.所以軌跡的方程為.                   2分
方法2:設(shè)動圓圓心為,依題意得點到定點的距離和點到定直線的距離相等,
根據(jù)拋物線的定義可知,動點的軌跡是拋物線.                    1分
且其中定點為焦點,定直線為準(zhǔn)線.
所以動圓圓心的軌跡的方程為.    2分

(2)由(1)得,即,則
設(shè)點,由導(dǎo)數(shù)的幾何意義知,直線的斜率為
.          3分
由題意知點.設(shè)點,,

.                  4分
因為,.           5分
由于,即.         6分
所以.                               7分
(3)方法1:由點的距離等于,可知

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點,右準(zhǔn)線為,離心率為.若直線與橢圓交于不同的兩點、,以線段為直徑作圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若圓軸相切,求圓被直線截得的線段長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的離心率為
直線:y=x+2與原點為圓心,以橢圓C的短軸長為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點的直線與橢圓交于,兩點.設(shè)直線的斜率,在軸上是否存在點,使得是以GH為底邊的等腰三角形. 如果存在,求出實數(shù)的取值范圍,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,且經(jīng)過點
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點的直線與橢圓交于兩點(點與點不重合),
①求的值;
②當(dāng)為等腰直角三角形時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的離心率,是其左右焦點,點是直線(其中)上一點,且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點,滿足,求為坐標(biāo)原點)面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點為動點,分別為橢圓的左右焦點.已知△為等腰三角形.(1)求橢圓的離心率;(2)設(shè)直線與橢圓相交于兩點,是直線上的點,滿足,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

秒“嫦娥二號”探月衛(wèi)星由長征三號丙運載火箭送入近地點高度約公里、遠地點高度約萬公里的直接奔月橢圓(地球球心為一個焦點)軌道Ⅰ飛行。當(dāng)衛(wèi)星到達月球附近的特定位置時,實施近月制動及軌道調(diào)整,衛(wèi)星變軌進入遠月面公里、近月面公里(月球球心為一個焦點)的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機變軌進入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開展相關(guān)技術(shù)試驗和科學(xué)探測。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大;
(Ⅱ)以為右焦點,求橢圓軌道Ⅱ的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線與拋物線相切于點)且與軸交于點為坐標(biāo)原點,定點B的坐標(biāo)為.

(1)若動點滿足|=,求點的軌跡.
(2)若過點的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點,試求面積之比的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案