直三棱柱ABC-A1B1C1中,CA=CC1=2CB,∠ACB=90°,則直線BC1與直線AB1夾角的余弦值為______.
分別以CA、CC1、CB為x軸、y軸和z軸建立如圖坐標系,
∵CA=CC1=2CB,∴可設(shè)CB=1,CA=CC1=2
∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)
BC1
=(0,2,-1),
AB1
=(-2,2,1)
可得
BC1
AB1
=0×(-2)+2×2+(-1)×1=-3,且|
BC1
|
=
5
,|
AB1
|
=3,
向量
BC1
AB1
所成的角(或其補角)就是直線BC1與直線AB1夾角,
設(shè)直線BC1與直線AB1夾角為θ,則cosθ=
BC1
AB1
|
BC1
||
AB1
|
=
5
5

故答案為:
5
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四棱錐的一個對角截面與一個側(cè)面的面積比為,則其側(cè)面與底面的夾角為(     ).
、;    、;   ;     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,點E、M分別為A1B、C1C的中點,過點A1,B,M三點的平面A1BMN交C1D1于點N.
(Ⅰ)求證:EM∥平面A1B1C1D1
(Ⅱ)求二面角B—A1N—B1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知P為△ABC所在平面外的一點,PC⊥AB,PC=AB=2,E、F分別為PA和BC的中點
(1)求EF與PC所成的角;
(2)求線段EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

記動點P是棱長為1的正方體ABCD-A1B1C1D1的對角線BD1上一點,記
D1P
D1B
.當∠APC為鈍角時,則λ的取值范圍為(  )
A.(0,1)B.(
1
3
,1)
C.(0,
1
3
)
D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖:正四面體S-ABC中,如果E,F(xiàn)分別是SC,AB的中點,那么異面直線EF與SA所成的角等于( 。
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1,∠BAC=90°,D為棱BB1的中點
(Ⅰ)求異面直線C1D與A1C所成的角;
(Ⅱ)求證:平面A1DC⊥平面ADC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正三棱柱ABC-A1B1C1中,若AB=
2
,BB1=1,則AB1與C1B所成角的大小為( 。
A.60°B.90°C.105°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a和b是成60°角的兩條異面直線,則過空間一點且與a和b都成60°角的直線共有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

同步練習(xí)冊答案