分析 利用奇函數(shù)的性質(zhì),求出f(-2);借助二次函數(shù)圖象的特征及奇函數(shù)性質(zhì)可求a的范圍.
解答 解:f(-2)=-f(2)=-(-4+2a+a+1)=-3a+3;
①當(dāng)a≤0時,對稱軸x=$\frac{a}{2}$≤0,所以f(x)=-x2+ax+a+1在[0,+∞)上單調(diào)遞減,
由于奇函數(shù)關(guān)于原點(diǎn)對稱的區(qū)間上單調(diào)性相同,所以f(x)在(-∞,0)上單調(diào)遞減,
所以a≤0時,f(x)在R上為單調(diào)遞減函數(shù),
當(dāng)a>0時,f(x)在(0,$\frac{a}{2}$)遞增,在($\frac{a}{2}$,+∞)上遞減,不合題意,
所以函數(shù)f(x)為單調(diào)減函數(shù)時,a的范圍為a≤0.
故答案為:-3a+3;a≤0.
點(diǎn)評 本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查學(xué)生分析問題解決問題的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?n∈N*,Sn<an+1 | |
B. | ?n∈N*,an•an+1≤an+2 | |
C. | ?n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+2}$=2a${\;}_{{n}_{0}+1}$ | |
D. | ?n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+3}$=a${\;}_{{n}_{0}+1}$+a${\;}_{{n}_{0}+2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ②④ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com