直線l:3x-y-6=0被圓C:x2+y2-2x+6y=0截得的弦長為( 。
A、2
B、3
C、2
10
D、
13
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:求出圓的圓心與半徑,判斷直線與圓的位置關(guān)系,然后求解弦長即可.
解答: 解:圓C:x2+y2-2x+6y=0化為:(x-1)2+(y+3)2=10,
圓的圓心(1,-3),半徑為
10
,
圓的圓心到直線的距離為:
|3+3-6|
32+1
=0
,
所以直線經(jīng)過圓的圓心,
直線l:3x-y-6=0被圓C:x2+y2-2x+6y=0截得的弦長為:2
10

故選:C.
點(diǎn)評:本題考查直線與圓的位置關(guān)系的應(yīng)用,弦長的求法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,兩焦點(diǎn)F1,F(xiàn)2之間的距離為2
3
,橢圓上第一象限內(nèi)的點(diǎn)P滿足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C的右頂點(diǎn)為A,直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,且滿足AM⊥AN.求證:直線l過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(x-a)(x-b)(x-c),a、b、c為互不相等的實(shí)數(shù),則
a2
f′(a)
+
b2
f′(b)
+
c2
f′(c)
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域 為R,當(dāng)x<0時,f(x)>1,且對任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y),且f(2)=4
(Ⅰ)求f(0),f(1)的值;
(Ⅱ)證明f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(1,
1
3
)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為f(n)-c,數(shù)列{bn}(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求常數(shù)c;
(2)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(3)若數(shù)列{
1
bnbn+1
}前n項(xiàng)和為Tn,問Tn
1000
2009
的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的長軸為2,離心率為
1
2
,則其短半軸為( 。
A、
2
2
B、
2
C、
3
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
+
y2
k
=1的離心率e∈(1,2),則k的取值范圍是(  )
A、(-10,0)
B、(-12,0)
C、(-3,0)
D、(-60,-12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A和B是兩個命題,如果A是B的充分條件,那么B是A的
 
條件,¬A是¬B的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求棱長為a的正八面體的內(nèi)切球的半徑.

查看答案和解析>>

同步練習(xí)冊答案