【題目】為研究某種圖書(shū)每?jī)?cè)的成本費(fèi)(元)與印刷數(shù)(千冊(cè))的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
15.25 | 3.63 | 0.269 | 2085.5 | 0.787 | 7.049 |
表中, .
(1)根據(jù)散點(diǎn)圖判斷: 與哪一個(gè)更適宜作為每?jī)?cè)成本費(fèi)(元)與印刷數(shù)(千冊(cè))的回歸方程類型?(只要求給出判斷,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);
(3)若每?jī)?cè)書(shū)定價(jià)為10元,則至少應(yīng)該印刷多少冊(cè)才能使銷售利潤(rùn)不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)
(附:對(duì)于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為, )
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018屆四川省綿陽(yáng)南山中學(xué)高三二診】已知橢圓的焦距為,且經(jīng)過(guò)點(diǎn).過(guò)點(diǎn)的斜率為的直線與橢圓交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),直線交軸于點(diǎn).
(1)求的取值范圍;
(2)試問(wèn): 是否為定值?若是,求出定值;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)若曲線的一條切線經(jīng)過(guò)點(diǎn),求這條切線的方程.
(2)若關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根x1,x2。
①求實(shí)數(shù)a的取值范圍;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為5,雙曲線的左頂點(diǎn)為,若雙曲線的一條漸近線與直線平行,則實(shí)數(shù)的值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是2017年第一季度中國(guó)某五省情況圖,則下列陳述正確的是( )
①2017年第一季度 總量高于4000億元的省份共有3個(gè);
②與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長(zhǎng);
③去年同期的總量前三位依次是省、省、;
④2016年同期省的總量居于第四位.
A. ①② B. ②③④ C. ②④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為, 上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和為4,當(dāng)點(diǎn)運(yùn)動(dòng)到橢圓的上頂點(diǎn)時(shí),直線恰與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,若交直線于兩點(diǎn).問(wèn)以為直徑的圓是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中生調(diào)查了當(dāng)?shù)啬承^(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成三組,并作出如下頻率分布直方圖:
(1)在直方圖的經(jīng)濟(jì)損失分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以經(jīng)濟(jì)損失落入該區(qū)間的頻率作為經(jīng)濟(jì)損失取該區(qū)間中點(diǎn)值的概率(例如:經(jīng)濟(jì)損失則取,且的概率等于經(jīng)濟(jì)損失落入的頻率),F(xiàn)從當(dāng)?shù)氐木用裰须S機(jī)抽出2戶進(jìn)行捐款援助,設(shè)抽出的2戶的經(jīng)濟(jì)損失的和為,求的分布列和數(shù)學(xué)期望.
(2)臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,此高中生調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過(guò)4000元 | 經(jīng)濟(jì)損失超過(guò)4000元 | 合計(jì) | |
捐款超過(guò)500元 | 30 | ||
捐款不超過(guò)500元 | 6 | ||
合計(jì) |
附:臨界值表參考公式: .
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是矩形, M為PD的中點(diǎn),PA⊥平面ABCD,PA=AD= 4, AB = 2.
(1)求證:AM⊥平面MCD;
(2)求直線PC與平面MAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中, 分別為的中點(diǎn), 是上一個(gè)動(dòng)點(diǎn),且.
(1)當(dāng)時(shí),求證:平面平面;
(2)是否存在,使得?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com