(本小題滿分12分)
等比數(shù)列{}的前n項(xiàng)和為, 已知對(duì)任意的  ,點(diǎn),均在函數(shù)均為常數(shù))的圖像上.
(1)求r的值;
(2)當(dāng)b=2時(shí),記    求數(shù)列的前項(xiàng)和

(1)(2) 

解析試題分析:解:因?yàn)閷?duì)任意的,點(diǎn),均在函數(shù)均為常數(shù))的圖像上.所以得,
當(dāng)時(shí),,
當(dāng)時(shí),,
又因?yàn)閧}為等比數(shù)列, 所以, 公比為,    所以
(2)當(dāng)b=2時(shí),,   


相減,得

所以
考點(diǎn):數(shù)列的知識(shí)
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用通項(xiàng)公式來選擇求和方法一般要掌握的是錯(cuò)位相減法和裂項(xiàng)求和以及分組求和,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,,等差數(shù)列中,,且。
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是等比數(shù)列,且,
(1)求數(shù)列的通項(xiàng)公式
(2)令,求的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是首項(xiàng)為且公比q不等于1的等比數(shù)列,是其前n項(xiàng)的和,成等差數(shù)列.證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}滿足。
(1)求證:數(shù)列{}是等比數(shù)列。
(2)求的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知等比數(shù)列項(xiàng)的和為 的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:
(1)求證:數(shù)列為等比數(shù)列;
(2)求證:數(shù)列為遞增數(shù)列;
(3)若當(dāng)且僅當(dāng)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)在等比數(shù)列中,
(1)求出公比                           (2)求出

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

數(shù)列,…前n項(xiàng)的和為

A. B. 
C. D. 

查看答案和解析>>

同步練習(xí)冊(cè)答案