已知點是拋物線上的動點,是拋物線的焦點,若點,則的最小值是         .

試題分析:過P作準線l的垂線PM,垂足為M,則|PF|=|PM|,所以=|PA|+|PM|,
過A作AN垂直準線l,垂直為N,則=|PA|+|PM|,顯然當點P為AN與拋物線的交點時,
取得最小值|AN|=.
點評:解本小題的關(guān)鍵是把P到F的距離轉(zhuǎn)化為P到準線的距離,從而轉(zhuǎn)化為求=|PA|+|PM|
的最小值,再利用三角形兩邊之差小于第三邊可知=|PA|+|PM|.到此問題得解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

過拋物線的焦點F作斜率分別為的兩條不同的直線,且,相交于點A,B,相交于點C,D。以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為
(I)若,證明;;
(II)若點M到直線的距離的最小值為,求拋物線E的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)如圖所示,直線l與拋物線y2=x交于A(x1,y1),B(x2,y2)兩點,與x軸交于點M,且y1y2=-1,

(Ⅰ)求證:點的坐標為;
(Ⅱ)求證:OA⊥OB;
(Ⅲ)求△AOB面積的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)拋物線上一點P到y(tǒng)軸的距離是4,則點P到該拋物線的焦點的距離是  (     )
A.6 B.4C.8D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為,若雙曲線的一條漸近線與直線平行,則實數(shù)的值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題13分)曲線上任意一點M滿足, 其中F(-F( 拋物線的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(1)求,的標準方程;
(2)請問是否存在直線滿足條件:①過的焦點;②與交于不同
兩點,,且滿足?若存在,求出直線的方程;若不
存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是拋物線的焦點,是該拋物線上的動點,則線段中點的軌跡方程是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知直線上有一個動點,過點作直線垂直于軸,動點上,且滿足
(為坐標原點),記點的軌跡為.
(1)求曲線的方程;
(2)若直線是曲線的一條切線, 當點到直線的距離最短時,求直線的方程. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,設(shè)是拋物線上一點,且在第一象限. 過點作拋物線的切線,交軸于點,過點作軸的垂線,交拋物線于點,此時就稱確定了.依此類推,可由確定,.記,。

給出下列三個結(jié)論:
;
②數(shù)列為單調(diào)遞減數(shù)列;
③對于,,使得.
其中所有正確結(jié)論的序號為__________。

查看答案和解析>>

同步練習冊答案