【題目】三個班共有名學(xué)生,為調(diào)查他們的上網(wǎng)情況,通過分層抽樣獲得了部分學(xué)生一周的上網(wǎng)時長,數(shù)據(jù)如下表(單位:小時):
班 | |
班 | |
班 |
(1)試估計班的學(xué)生人數(shù);
(2)從這120名學(xué)生中任選1名學(xué)生,估計這名學(xué)生一周上網(wǎng)時長超過15小時的概率;
(3)從A班抽出的6名學(xué)生中隨機(jī)選取2人,從B班抽出的7名學(xué)生中隨機(jī)選取1人,求這3人中恰有2人一周上網(wǎng)時長超過15小時的概率.
【答案】(1)36;(2);(3).
【解析】
(1)利用分層抽樣的方法即可得到答案;
(2)利用古典概率的公式即可得到答案;
(3)利用分類和分步計數(shù)原理和組合公式即可得到答案.
(1)由題意知,抽出的20名學(xué)生中,來自班的學(xué)生有名.
根據(jù)分層抽樣的方法可知班的學(xué)生人數(shù)估計為人.
(2)設(shè)從選出的20名學(xué)生中任選1人,共有20種選法,
設(shè)此人一周上網(wǎng)時長超過15小時為事件D,
其中D包含的選法有3+2+4=9種,所以 .
由此估計從120名學(xué)生中任選1名,
該生一周上網(wǎng)時長超過15小時的概率為.
(3)設(shè)從班抽出的6名學(xué)生中隨機(jī)選取2人,
其中恰有人一周上網(wǎng)超過15小時為事件,
從班抽出的7名學(xué)生中隨機(jī)選取1人,
此人一周上網(wǎng)超過15小時為事件,則所求事件的概率為:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a為非零常數(shù).
討論的極值點個數(shù),并說明理由;
若,證明:在區(qū)間內(nèi)有且僅有1個零點;設(shè)為的極值點,為的零點且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為自然對數(shù)的底數(shù).
(1)當(dāng)時,證明,,;
(2)若函數(shù)在上存在極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A-BCD中,,點E為棱CD上的一點,且.
(1)求證:平面平面BCD;
(2)若三棱錐A-BCD的體積為,求三棱錐E-ABD的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱的軸截面ABCD是邊長為2的正方形,點P是圓弧CD上的一動點(不與C,D重合),點Q是圓弧AB的中點,且點P,Q在平面ABCD的兩側(cè).
(1)證明:平面PAD⊥平面PBC;
(2)設(shè)點P在平面ABQ上的射影為點O,點E,F分別是△PQB和△POA的重心,當(dāng)三棱錐P﹣ABC體積最大時,回答下列問題.
(i)證明:EF∥平面PAQ;
(ii)求平面PAB與平面PCD所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, , , .
(Ⅰ)證明: ;
(Ⅱ)若,在棱上是否存在點,使得二面角的大小為,若存在,求的長,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)將曲線上各點的縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變)得到曲線,求的參數(shù)方程;
(2)若,分別是直線與曲線上的動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為了調(diào)查該校學(xué)生性別與身高的關(guān)系,對該校1000名學(xué)生按照的比例進(jìn)行抽樣調(diào)查,得到身高頻數(shù)分布表如下:
男生身高頻率分布表
男生身高 (單位:厘米) | ||||||
頻數(shù) | 7 | 10 | 19 | 18 | 4 | 2 |
女生身高頻數(shù)分布表
女生身高 (單位:厘米) | ||||||
頻數(shù) | 3 | 10 | 15 | 6 | 3 | 3 |
(1)估計這1000名學(xué)生中女生的人數(shù);
(2)估計這1000名學(xué)生中身高在的概率;
(3)在樣本中,從身高在的女生中任取2名女生進(jìn)行調(diào)查,求這2名學(xué)生身高在的概率.(身高單位:厘米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
如圖,已知拋物線,過點任作一直線與相交于兩點,過點作軸的平行線與直線相交于點(為坐標(biāo)原點).
(1)證明:動點在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點,與(1)中的定直線相交于點,證明:為定值,并求此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com