【題目】(本小題滿分13分)

如圖,已知拋物線,過(guò)點(diǎn)任作一直線與相交于兩點(diǎn),過(guò)點(diǎn)軸的平行線與直線相交于點(diǎn)為坐標(biāo)原點(diǎn)).

(1)證明:動(dòng)點(diǎn)在定直線上;

(2)的任意一條切線(不含軸)與直線相交于點(diǎn),與(1)中的定直線相交于點(diǎn),證明:為定值,并求此定值.

【答案】(1)詳見(jiàn)解析,(2)8.

【解析】

試題分析:(1)證明動(dòng)點(diǎn)在定直線上,實(shí)質(zhì)是求動(dòng)點(diǎn)的軌跡方程,本題解題思路為根據(jù)條件求出動(dòng)點(diǎn)的坐標(biāo),進(jìn)而探求動(dòng)點(diǎn)軌跡:依題意可設(shè)AB方程為,代入,得,即.設(shè),則有:,直線AO的方程為;BD的方程為;解得交點(diǎn)D的坐標(biāo)為,注意到,則有,因此D點(diǎn)在定直線上.(2)本題以算代征,從切線方程出發(fā),分別表示出的坐標(biāo),再化簡(jiǎn).設(shè)切線的方程為,代入,即,由,化簡(jiǎn)整理得,故切線的方程可寫(xiě)為,分別令的坐標(biāo)為,則,即為定值8.

試題解析:(1)解:依題意可設(shè)AB方程為,代入,得,即.設(shè),則有:,直線AO的方程為;BD的方程為;解得交點(diǎn)D的坐標(biāo)為,注意到,則有,因此D點(diǎn)在定直線上.(2)依題設(shè),切線的斜率存在且不等于零,設(shè)切線的方程為,代入,即,由,化簡(jiǎn)整理得,故切線的方程可寫(xiě)為,分別令的坐標(biāo)為,則,即為定值8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三個(gè)班共有名學(xué)生,為調(diào)查他們的上網(wǎng)情況,通過(guò)分層抽樣獲得了部分學(xué)生一周的上網(wǎng)時(shí)長(zhǎng),數(shù)據(jù)如下表(單位:小時(shí)):

1)試估計(jì)班的學(xué)生人數(shù);

2)從這120名學(xué)生中任選1名學(xué)生,估計(jì)這名學(xué)生一周上網(wǎng)時(shí)長(zhǎng)超過(guò)15小時(shí)的概率;

3)從A班抽出的6名學(xué)生中隨機(jī)選取2人,從B班抽出的7名學(xué)生中隨機(jī)選取1人,求這3人中恰有2人一周上網(wǎng)時(shí)長(zhǎng)超過(guò)15小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為A,過(guò)的直線y軸交于點(diǎn)M,滿足O為坐標(biāo)原點(diǎn)),且直線l與直線之間的距離為.

1)求橢圓C的方程;

2)在直線上是否存在點(diǎn)P,滿足?存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線Cy2=8x上一點(diǎn)A到焦點(diǎn)F的距離為6,若點(diǎn)P為拋物線C準(zhǔn)線上的動(dòng)點(diǎn),則|OP|+|AP|的最小值為( 。

A. 4B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面

1)求證:平面;

2)求平面與平面所成二面角的正弦值;

3)若點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個(gè)正三角形.挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第5個(gè)大正三角形中隨機(jī)撒512粒大小均勻的細(xì)小顆粒物,則落在白色區(qū)域的細(xì)小顆粒物的數(shù)量約是(

A.256B.350C.162D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)橢圓的四個(gè)頂點(diǎn)與坐標(biāo)軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點(diǎn))的面積為,且過(guò)橢圓的右焦點(diǎn)的傾斜角為的直線過(guò)點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程

2)若射線與橢圓的交點(diǎn)分別為.當(dāng)它們的斜率之積為時(shí),試問(wèn)的面積是否為定值?若為定值,求出此定值;若不為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知直三棱柱的底面為等腰直角三角形,點(diǎn)為線段的中點(diǎn).

1)探究直線與平面的位置關(guān)系,并說(shuō)明理由;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,是以為斜邊的等腰直角三角形,是等邊三角形,,如圖②,將沿折起使平面平面分別為的中點(diǎn),點(diǎn)在棱上,且,點(diǎn)在棱上,且.

1)在棱上是否存在一點(diǎn),使平面平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案