【題目】(本小題滿分13分)

如圖,已知拋物線,過點任作一直線與相交于兩點,過點軸的平行線與直線相交于點為坐標原點).

(1)證明:動點在定直線上;

(2)的任意一條切線(不含軸)與直線相交于點,與(1)中的定直線相交于點,證明:為定值,并求此定值.

【答案】(1)詳見解析,(2)8.

【解析】

試題分析:(1)證明動點在定直線上,實質是求動點的軌跡方程,本題解題思路為根據(jù)條件求出動點的坐標,進而探求動點軌跡:依題意可設AB方程為,代入,得,即.設,則有:,直線AO的方程為;BD的方程為;解得交點D的坐標為,注意到,則有,因此D點在定直線上.(2)本題以算代征,從切線方程出發(fā),分別表示出的坐標,再化簡.設切線的方程為,代入,即,由,化簡整理得,故切線的方程可寫為,分別令的坐標為,則,即為定值8.

試題解析:(1)解:依題意可設AB方程為,代入,得,即.設,則有:,直線AO的方程為;BD的方程為;解得交點D的坐標為,注意到,則有,因此D點在定直線上.(2)依題設,切線的斜率存在且不等于零,設切線的方程為,代入,即,由,化簡整理得,故切線的方程可寫為,分別令的坐標為,則,即為定值8.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】三個班共有名學生,為調查他們的上網(wǎng)情況,通過分層抽樣獲得了部分學生一周的上網(wǎng)時長,數(shù)據(jù)如下表(單位:小時):

1)試估計班的學生人數(shù);

2)從這120名學生中任選1名學生,估計這名學生一周上網(wǎng)時長超過15小時的概率;

3)從A班抽出的6名學生中隨機選取2人,從B班抽出的7名學生中隨機選取1人,求這3人中恰有2人一周上網(wǎng)時長超過15小時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,上頂點為A,過的直線y軸交于點M,滿足O為坐標原點),且直線l與直線之間的距離為.

1)求橢圓C的方程;

2)在直線上是否存在點P,滿足?存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,拋物線Cy2=8x上一點A到焦點F的距離為6,若點P為拋物線C準線上的動點,則|OP|+|AP|的最小值為( 。

A. 4B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

1)求證:平面

2)求平面與平面所成二面角的正弦值;

3)若點在線段上,且直線與平面所成角的正弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學家謝賓斯基在1915年提出,先作一個正三角形.挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第5個大正三角形中隨機撒512粒大小均勻的細小顆粒物,則落在白色區(qū)域的細小顆粒物的數(shù)量約是(

A.256B.350C.162D.96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過橢圓的四個頂點與坐標軸垂直的四條直線圍成的矩形是第一象限內的點)的面積為,且過橢圓的右焦點的傾斜角為的直線過點

1)求橢圓的標準方程

2)若射線與橢圓的交點分別為.當它們的斜率之積為時,試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知直三棱柱的底面為等腰直角三角形,點為線段的中點.

1)探究直線與平面的位置關系,并說明理由;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①,是以為斜邊的等腰直角三角形,是等邊三角形,,如圖②,將沿折起使平面平面分別為的中點,點在棱上,且,點在棱上,且.

1)在棱上是否存在一點,使平面平面?若存在,求的值;若不存在,請說明理由.

2)求點到平面的距離.

查看答案和解析>>

同步練習冊答案