【題目】下列說法中錯(cuò)誤的為

A.已知,,且的夾角為銳角,則實(shí)數(shù)的取值范圍是

B.向量,不能作為平面內(nèi)所有向量的一組基底

C.,則方向上的正射影的數(shù)量為

D.三個(gè)不共線的向量,,,滿足,則的內(nèi)心

【答案】AC

【解析】

對(duì)于A,由向量的交角為銳角的等價(jià)條件為數(shù)量積大于0,且兩向量不共線,計(jì)算即可;

對(duì)于B,由,可知,不能作為平面內(nèi)所有向量的一組基底;

對(duì)于C,利用向量投影的定義即可判斷;

對(duì)于D,由,點(diǎn)在角的平分線上,同理,點(diǎn)在角的平分線上,點(diǎn)在角的平分線上,進(jìn)而得出點(diǎn)的內(nèi)心.

對(duì)于A,已知,且的夾角為銳角,

可得,且不共線,,

即有,且,

解得,則實(shí)數(shù)的取值范圍是,

A不正確;

對(duì)于B,向量,,,

,

向量,不能作為平面內(nèi)所有向量的一組基底,故B正確;

對(duì)于C,若,則上的投影為,故C錯(cuò)誤;

對(duì)于D,表示與中角的外角平分線共線的向量,

,可知垂直于角的外角平分線,

所以,點(diǎn)在角的平分線上,

同理,點(diǎn)在角的平分線上,點(diǎn)在角的平分線上,

故點(diǎn)的內(nèi)心,D正確.

故選:AC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1求圓C的普通方程和直線l的直角坐標(biāo)方程;

2設(shè)M是直線l上任意一點(diǎn),過M做圓C切線,切點(diǎn)為A、B,求四邊形AMBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若有兩個(gè)零點(diǎn),求的范圍;

2)若有兩個(gè)極值點(diǎn),求的范圍;

3)在(2)的條件下,若的兩個(gè)極值點(diǎn)為 ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)當(dāng)時(shí),求的圖象在處的切線方程;

(Ⅱ)若函數(shù)有兩個(gè)不同零點(diǎn), ,且,求證: ,其中的導(dǎo)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,函數(shù) ,且圖象上一個(gè)最高點(diǎn)為最近的一個(gè)最低點(diǎn)的坐標(biāo)為 .

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)設(shè)為常數(shù),判斷方程在區(qū)間上的解的個(gè)數(shù);

(Ⅲ)在銳角中,若,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,E、F、G、H分別是棱、、的中點(diǎn).

1)判斷直線的位置關(guān)系,并說明理由;

2)求異面直線所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求函數(shù)的極值;

(2)設(shè),對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次學(xué)科測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

則參加測試的總?cè)藬?shù)為______,分?jǐn)?shù)在之間的人數(shù)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案