【題目】已知橢圓1ab0)的離心率為,以橢圓的右頂點(diǎn)與下頂點(diǎn)為直徑端點(diǎn)的圓的面積為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn),動(dòng)直線與橢圓交于軸同一側(cè)的兩點(diǎn),且滿足,試問(wèn)直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出此定點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.

【答案】11;(2)不存在,見(jiàn)解析

【解析】

(1)由題意可求得圓的半徑為,由面積公式,可解得,,可得,即可求出橢圓方程;

(2) 所以設(shè)的方程:,聯(lián)立直線方程和橢圓方程,得到根與系數(shù)的關(guān)系,利用,即可求出所得,驗(yàn)證是否符合條件即可.

1)由題意得:橢圓的右頂點(diǎn)為,下頂點(diǎn),所以橢圓的右頂點(diǎn)與下頂點(diǎn)為直徑端點(diǎn)的圓的半徑為,所以,即:,即,而所以

所以橢圓C的標(biāo)準(zhǔn)方程為:1;

2)由題意得直線的斜率存在且不為零,

所以設(shè)的方程:,

代入橢圓方程整理得: ,

因?yàn)?/span>,

, ,

所以即:

所以,

所以,所以直線,與橢圓聯(lián)立,時(shí),,與橢圓相切,過(guò)上頂點(diǎn)與時(shí),斜率為,所以在軸同一側(cè)時(shí)斜率在,而這時(shí)不滿足,所以不存在符合題意條件的定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷錯(cuò)誤的是(

A.為可導(dǎo)函數(shù)的極值點(diǎn)的必要不充分條件

B.命題“”的否定是

C.命題“若,則”的逆否命題是“若,則

D.,則方程有實(shí)數(shù)根的逆命題是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)坐標(biāo)是,,過(guò)點(diǎn)垂直于長(zhǎng)軸的直線交橢圓與兩點(diǎn),且.

1)求橢圓方程:

2)過(guò)坐標(biāo)原點(diǎn)做兩條互相垂直的射線,與橢圓分別交于,兩點(diǎn),求證:點(diǎn)到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從裝有個(gè)不同小球的口袋中取出個(gè)小球(),共有種取法。在這種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,共有種取法;第二類是某指定的小球被取到,共有種取法。顯然,即有等式:成立。試根據(jù)上述想法,下面式子(其中)應(yīng)等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.

(1)求橢圓的方程;

(2)已知過(guò)橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過(guò)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在區(qū)間上兩個(gè)函數(shù),,,.

1)求函數(shù)的最大值;

2)若在區(qū)間單調(diào),求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),若對(duì)于任意,總存在,使恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案