【題目】函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
【答案】(1)見(jiàn)解析;(2) 或
【解析】
(1)先求得函數(shù)的導(dǎo)函數(shù)和定義域,對(duì)分成等種情況,分類討論函數(shù)的單調(diào)性.(2)將分離常數(shù)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)性和最值,由此求得的取值范圍.
(1),
(i)當(dāng)時(shí),,令,得,令,得,
函數(shù)在上單調(diào)遞增,上單調(diào)遞減;
(ii)當(dāng)時(shí),令,得,
令,得,令,得,
函數(shù)在和上單調(diào)遞增,上單調(diào)遞減;
(iii)當(dāng)時(shí),,函數(shù)f(x)在上單調(diào)遞增;
(iv)當(dāng)時(shí),
令,得,令,得
函數(shù)在和上單調(diào)遞增,上單調(diào)遞減;
綜上所述:當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為;
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為
(2)當(dāng)時(shí),,由,得,
又,所以,要使方程在區(qū)間上有唯一實(shí)數(shù)解,
只需有唯一實(shí)數(shù)解,
令,∴,
由得;得,
∴在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
,,,故或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于由2n個(gè)質(zhì)數(shù)組成的集合,可將其元素兩兩搭配成n個(gè)乘積,得到一個(gè)n元集.若與是由此得到的兩個(gè)n元集,其中, ,且,則稱集合對(duì){A ,B}是由M炮制成的一幅“對(duì)聯(lián)”(如由四元集{a,b,c,d}可炮制成三幅對(duì)聯(lián):
.
求六元質(zhì)數(shù)集M={a,b,c,d,e,f}所能炮制成的對(duì)聯(lián)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國(guó)際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長(zhǎng)生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說(shuō)體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說(shuō)體重較輕,身高大于或等于我們說(shuō)身高較高,身高小于170cm我們說(shuō)身高較矮.
(1)已知某高中共有32名男體育特長(zhǎng)生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請(qǐng)根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | |||
體重較重 | |||
合計(jì) |
(2)①?gòu)纳鲜?/span>32名男體育特長(zhǎng)生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值(保留兩位有效數(shù)字);
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 |
②通過(guò)殘差分析,對(duì)于殘差的最大(絕對(duì)值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過(guò)重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.請(qǐng)重新根據(jù)最最小二乘法的思想與公式,求出男體育特長(zhǎng)生的身高與體重的線性回歸方程.
(參考公式)
,,,,.
(參考數(shù)據(jù))
,,,,.
0.10
0.05
0.01
0.005
2.706
3.811
6.635
7.879
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在以為焦點(diǎn)的雙曲線上,過(guò)作軸的垂線,垂足為,若四邊形為菱形,則該雙曲線的離心率為( )
A. B. 2 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為拋物線:的焦點(diǎn),拋物線上的點(diǎn)滿足(為坐標(biāo)原點(diǎn)),且.
(1)求拋物線的方程;
(2)若直線:與拋物線交于不同的兩點(diǎn),是否存在實(shí)數(shù)及定點(diǎn),對(duì)任意實(shí)數(shù),都有?若存在,求出的值及點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為維護(hù)交通秩序,防范電動(dòng)自行車(chē)被盜,天津市公安局決定,開(kāi)展二輪電動(dòng)自行車(chē)免費(fèi)登記、上牌照工作.電動(dòng)自行車(chē)牌照分免費(fèi)和收費(fèi)(安裝防盜裝置)兩大類,群眾可以 自愿選擇安裝.已知甲、乙、丙三個(gè)不同類型小區(qū)的人數(shù)分別為15000,15000,20000.交管部門(mén)為了解社區(qū)居民意愿,現(xiàn)采用分層抽樣的方法從中抽取10人進(jìn)行電話訪談.
(Ⅰ)應(yīng)從甲小區(qū)和丙小區(qū)的居民中分別抽取多少人?
(Ⅱ)設(shè)從甲小區(qū)抽取的居民為,丙小區(qū)抽取的居民為.現(xiàn)從甲小區(qū)和丙小區(qū)已抽取的居民中隨機(jī)抽取2人接受問(wèn)卷調(diào)查.
(。┰囉盟o字母列舉出所有可能的抽取結(jié)果;
(ⅱ)設(shè)為事件“抽取的2人來(lái)自不同的小區(qū)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)(其中),若函數(shù)的圖象與軸的任意兩個(gè)相鄰交點(diǎn)間的距離為,且函數(shù)的圖象過(guò)點(diǎn).
(1)求的解析式;
(2)求的單調(diào)增區(qū)間:
(3)求在的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將高二(1)班的四個(gè)同學(xué)分到語(yǔ)文、數(shù)學(xué)、英語(yǔ)三個(gè)興趣小組,每個(gè)興趣小組至少有一名同學(xué)的分配方法有多少種?下列結(jié)論正確的有( )
A.B.
C.D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=.
(1)判斷函數(shù)在區(qū)間(-1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(2)求該函數(shù)在區(qū)間[2,4]上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com