△ABC中,a=
6
,b=2,B=45°,則角A=( 。
A、30°或150°
B、60°或120°
C、60°
D、30°
考點:正弦定理
專題:解三角形
分析:由正弦定理列出關(guān)系式,將a,b,sinB的值代入求出sinA的值,即可確定出A的度數(shù).
解答: 解:∵△ABC中,a=
6
,b=2,B=45°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinA=
asinB
b
=
6
×
2
2
2
=
3
2
,
∵a>b,∴A>B,
則A=60°或120°.
故選:B.
點評:此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線λ:2x-y+3=0與圓C:x2+(y-1)2=5的位置關(guān)系是( 。
A、相交B、相切C、相離D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

列命題中是假命題的個數(shù)是( 。
①?α,β∈R,使cos(α+β)=cosα+sinβ;
②?a>0,函數(shù)f(x)=ln2x+lnx-a有零點
③?m∈R,使f(x)=(m-1)x m2-4m+3是冪函數(shù),且在(0,+∞)上遞減;
④若函數(shù)f(x)=|2x-1|,則?x1,x2∈[0,1]且x1<x2,使得f(x1)>f(x2).
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
16
+
y2
4
=1上的點到直線
x=
2
-t
y=
1
2
t
(t為參數(shù))的最大距離是(  )
A、3
B、
11
C、2
2
D、
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為三條不重合的直線,α,β,γ為三個不重合的平面,下列四個命題:
①a∥b,b∥c⇒a∥c.
②a∥α,b∥α⇒a∥b.
③a∥b,b∥α⇒a∥α.
④a∥β,a∥α⇒α∥β.
其中正確命題的個數(shù)為( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項和為sn=an2+bn+c 給出下列命題:
①數(shù)列{an}的通項公式為an=2an+b-a;
②數(shù)列{an}是等差數(shù)列;
③當(dāng)c=0時,數(shù)列{an}是等差數(shù)列,其中正確的命題個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合I={x|-3<x<3,x∈z},A={1,2},B={-2,-1,2},則A∩(∁IB)等于( 。
A、{1}
B、{1,2}
C、{0,1,2}
D、{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的是( 。
A、如果命題“¬p”與命題“p或q”都是真命題,那么命題q一定是真命題
B、命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
C、“|x-1|<2成立”是“x(x-3)<0”的必要不充分條件
D、“sinθ=
1
2
”是“θ=30°”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公比大于1的等比數(shù)列,Sn為其前n項和.已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=
1
(log2an+1)•(log2an+2)
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案