考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由
=(n∈N
*),令n=1易求a
2=2,從而得公差d,進(jìn)而得到a
n;
(Ⅱ)由
=1可得T
n+1-T
n=2b
n-1,從而有b
n+1=2b
n-1,易知{b
n-1}是等比數(shù)列,據(jù)此可求得b
n=2
n+1,于是可得c
n,利用錯(cuò)位相減法可求得W
n.
解答:
解:(Ⅰ)∵
=(n∈N
*)
∴當(dāng)n=1,則
=3,
=3,結(jié)合a
1=1,得a
2=2,
∴d=a
2-a
1=1,a
n=a
1+(n-1)d=n,
∴a
n=n(n∈N
*);
(Ⅱ)由
=1可得T
n+1-b
n+1=T
n+b
n,
∴T
n+1-T
n=2b
n-1,即b
n+1=2b
n-1,b
n+1-1=2(b
n-1),
∴{b
n-1}是等比數(shù)列且b
1=3,公比q=2,
∴b
n-1=
(b1-1)qn-1=2×2
n-1=2
n,
∴b
n=2
n+1,
∴c
n=
=
=(2n+1)
•()n,
∴W
n=c
1+c
2+c
3+…+c
n=
3×+5×()2+7×()3+…+
(2n+1)×()n,
W
n=
3×()2+5×()3+7×()4+…+(2n+1)×()n+1,
相減得,
W
n=
3×+2×()2+2×
()3+…+2×
()n-(2n+1)×()n+1=
+2(+++…+)-
=
+2×-
=
+2×(1-)-
∴W
n=5-
.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式、由遞推式求數(shù)列通項(xiàng)及數(shù)列求和等知識(shí),利用錯(cuò)位相減法對(duì)數(shù)列求和是高考考查的重點(diǎn)內(nèi)容,要熟練掌握.