【題目】在平面直角坐標系xoy中,直線的參數(shù)方程為(t為參數(shù)),P、Q分別為直線與x軸、y軸的交點,線段PQ的中點為M.
(Ⅰ)求直線的直角坐標方程;
(Ⅱ)以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標和直線OM的極坐標方程.
【答案】(Ⅰ);(Ⅱ)M的極坐標為,直線OM的極坐標方程為:;
【解析】試題分析:(Ⅰ)直接根據(jù)直線的參數(shù)方程消去參數(shù)即可得出直角坐標下的直線的方程;(Ⅱ)分別令和計算出點P的直角坐標為(2,0)和點Q的直角坐標為.,由中點的坐標計算公式可得線段PQ的中點M的直角坐標為. 然后由極坐標與直角坐標的相互轉(zhuǎn)化公式即可得出點M的極坐標為,于是直線OM的極坐標方程為:.
試題解析:(Ⅰ)由為參數(shù))得,所以直線的平面直角坐標方程為.
(Ⅱ)當時,,所以點P的直角坐標為(2,0);當時,,所以點Q的直角坐標為. 所以線段PQ的中點M的直角坐標為. 所以和,且
,,所以M的極坐標為,直線OM的極坐標方程為:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,E,F是AD上互異的兩點,G,H是BC上互異的兩點,由圖可知,①AB與CD互為異面直線;②FH分別與DC,DB互為異面直線;③EG與FH互為異面直線;④EG與AB互為異面直線.其中敘述正確的是 ( )
A. ①③ B. ②④ C. ①④ D. ①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),在點處的切線方程為.
(1)求的解析式;
(2)求的單調(diào)區(qū)間;
(3)若函數(shù)在定義域內(nèi)恒有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(1)求數(shù)列{bn}的通項公式;
(2)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD .
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=1,M為AD中點,求三棱錐A-MBC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中:
①線性回歸方程必過點;
②在回歸方程中,當變量增加一個單位時, 平均增加5個單位;
③在回歸分析中,相關(guān)指數(shù)為0.80的模型比相關(guān)指數(shù)為0.98的模型擬合的效果要好;
④在回歸直線中,變量時,變量的值一定是-7.
其中假命題的個數(shù)是 ( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)正項數(shù)列的前項和,且滿足.
(Ⅰ)計算的值,猜想的通項公式,并證明你的結(jié)論;
(Ⅱ)設(shè)是數(shù)列的前項和,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】上半年產(chǎn)品產(chǎn)量與單位成本資料如下:
月份 | 產(chǎn)量/千件 | 單位成本/元 |
1 | 2 | 73 |
2 | 3 | 72 |
3 | 4 | 71 |
4 | 3 | 73 |
5 | 4 | 69 |
6 | 5 | 68 |
且已知產(chǎn)量x與單位成本y具有線性相關(guān)關(guān)系.
(1)求出回歸方程.
(2)指出產(chǎn)量每增加1 000件時,單位成本平均變動多少?
(3)假定產(chǎn)量為6 000件時,單位成本為多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面平面, 為的中點, 是棱上的點, , , .
(1)求證:平面平面;
(2)若二面角大小為,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com