【題目】已知是定義域?yàn)?/span>的奇函數(shù),當(dāng)時(shí), .
(1)寫出函數(shù)的解析式.
(2)若方程恰有3個(gè)不同的解,求的取值范圍.
【答案】(1)f(x)= ;(2).
【解析】試題分析:(1)設(shè),則,結(jié)合的解析式及的定義域?yàn)?/span>的奇函數(shù)即可求得函數(shù)的解析式;(2)畫出函數(shù)圖像,數(shù)形結(jié)合得答案。
試題解析:(1)當(dāng)x∈(-∞,0)時(shí),-x∈(0,+∞),
∵y=f(x)是奇函數(shù),
∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x,
∴f(x)=
(2)當(dāng)x∈[0,+∞)時(shí),f(x)=x2-2x=(x-1)2-1,最小值為-1.
∴當(dāng)x∈(-∞,0)時(shí),f(x)=-x2-2x=1-(x+1)2,最大值為1.
∴據(jù)此可作出函數(shù)y=f(x)的圖象,如圖所示,
根據(jù)圖象得,若方程f(x)=a恰有3個(gè)不同的解,則a的取值范圍是(-1,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)為 的正方形,AA1=3,E是AA1的中點(diǎn),過(guò)C1作C1F⊥平面BDE與平面ABB1A1交于點(diǎn)F,則 =
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)S={x|x=m+n,m、n∈Z}.
(1)若a∈Z,則a是否是集合S中的元素?
(2)對(duì)S中的任意兩個(gè)x1、x2,則x1+x2、x1·x2是否屬于S?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,且滿足.
(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;
(2)設(shè)函數(shù),求在區(qū)間上的最大值;
(3)若存在實(shí)數(shù)m,使得關(guān)于x的方程恰有4個(gè)不同的正根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線: ,圓:
(1)求證:直線與圓總相交;
(2)求出相交的弦長(zhǎng)的最小值及相應(yīng)的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB的兩個(gè)端點(diǎn)A、B分別在x軸和y軸上滑動(dòng),且∣AB∣=2.
(1)求線段AB的中點(diǎn)P的軌跡C的方程;
(2)求過(guò)點(diǎn)M(1,2)且和軌跡C相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).
(Ⅰ)求證: ∥平面
(Ⅱ)若,,
求證:平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A的坐標(biāo)為(4,1),點(diǎn)B(﹣7,﹣2)關(guān)于直線y=x的對(duì)稱點(diǎn)為C.
(Ⅰ)求以A、C為直徑的圓E的方程;
(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)A的直線l與圓E的另一個(gè)交點(diǎn)為D,|AD|=8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是公差不為零的等差數(shù)列,a1=1,且a1 , a3 , a9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 令 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com