【題目】為了了解一個(gè)小水庫(kù)中養(yǎng)殖的魚有關(guān)情況,從這個(gè)水庫(kù)中多個(gè)不同位置捕撈出100條魚,稱得每條魚的質(zhì)量(單位:千克),并將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示)

)在答題卡上的表格中填寫相應(yīng)的頻率;

)估計(jì)數(shù)據(jù)落在(1.15,1.30)中的概率為多少;

)將上面捕撈的100條魚分別作一記號(hào)后再放回水庫(kù),幾天后再?gòu)乃畮?kù)的多處不同位置捕撈出120條魚,其中帶有記號(hào)的魚有6條,請(qǐng)根據(jù)這一情況來(lái)估計(jì)該水庫(kù)中魚的總條數(shù)。

【答案】:)根據(jù)頻率分布直方圖可知,頻率=組距(頻率/組距),故可得下表

分組

頻率


0.05


0.20


0.28


0.30


0.15


0.02

0.30+0.15+0.02=0.47,所以數(shù)據(jù)落在中的概率約為0.47.

,所以水庫(kù)中魚的總條數(shù)約為2000.

【解析】

:)根據(jù)頻率分布直方圖可知,頻率=組距(頻率/組距),故可得下表

分組

頻率


0.05


0.20


0.28


0.30


0.15


0.02

0.30+0.15+0.02=0.47,所以數(shù)據(jù)落在中的概率約為0.47.

,所以水庫(kù)中魚的總條數(shù)約為2000.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)若,不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若 上最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷售額和利潤(rùn)額資料如下表:

(1)畫出散點(diǎn)圖;

(2)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤(rùn)額y與銷售額x之間的線性回歸方程;

(3)若該公司還有一個(gè)零售店某月銷售額為10千萬(wàn)元,試估計(jì)它的利潤(rùn)額是多少?

(參考公式:,其中:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有高中生1470人,現(xiàn)采用系統(tǒng)抽樣法抽取49人作問卷調(diào)查,將高一、高二、高三學(xué)生(高一、高二、高三分別有學(xué)生495人、493人、482人)按1,2,3,…,1470編號(hào),若第一組用簡(jiǎn)單隨機(jī)抽樣的方法抽取的號(hào)碼為23,則所抽樣本中高二學(xué)生的人數(shù)為

A. 15B. 16C. 17D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點(diǎn),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2) 已知點(diǎn)的極坐標(biāo)為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=ln4-x+1n2+x)的單調(diào)遞增區(qū)間為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, 分別為內(nèi)角的對(duì)邊,且

(1)求角的大;

(2)若的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)零點(diǎn)的個(gè)數(shù);

(2)若,當(dāng)=1時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為(萬(wàn)元),它們與投入資金(萬(wàn)元)的關(guān)系有如下公式:,,今將200萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬(wàn)元.

(Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬(wàn)元),求總利潤(rùn)(萬(wàn)元)關(guān)于的函數(shù)關(guān)系式及其定義域;

(Ⅱ)如何分配投入資金,才能使總利潤(rùn)最大,并求出最大總利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案