甲、乙、丙3人站到共有7級(jí)的臺(tái)階上,若每級(jí)臺(tái)階最多站3 人,同一級(jí)臺(tái)階上的人不區(qū)分站的位置,則不同的站法種數(shù)是
 
(用數(shù)字作答).
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:計(jì)算題,排列組合
分析:根據(jù)題意,分析可得甲、乙、丙3人都有7種不同的站法,由分步計(jì)數(shù)原理計(jì)算可得答案.
解答: 解:根據(jù)題意,甲、乙、丙3人站到共有7級(jí)的臺(tái)階上,
則甲有7種選擇,即甲有7種站法,
同理乙、丙2人也有7種站法,
則甲、乙、丙3人共有7×7×7=343種不同的站法;
故答案為343.
點(diǎn)評(píng):本題考查分步計(jì)數(shù)原理的應(yīng)用,注意本題中“若每級(jí)臺(tái)階最多站3 人,同一級(jí)臺(tái)階上的人不區(qū)分站的位置”的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的k值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a.
(1)求a的值;
(2)設(shè)D是B1C1上的任意一點(diǎn),求D到平面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,求證:∠PDE=∠POC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD,PD=AD=1,則點(diǎn)B到平面PAC的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABEF和正方形ABCD有公共邊AB,它們所在平面成60°的二面角,AB=CB=2a,BE=a,則DE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AD,AE,BC分別與圓O切于點(diǎn)D,E,F(xiàn),延長AF與圓O交于另一點(diǎn)G,給出下列三個(gè)結(jié)論:①AD+AE=AB+BC+CA,②AF•AG=AD•AE,③△AFB∽△ADG,其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面上有四個(gè)相異的點(diǎn)A、B、C、D,已知(
DB
+
DC
-2
DA
)•(
DB
-
DC
)=0,則△ABC的形狀是( 。
A、直角三角形
B、等腰三角形
C、等腰直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,四邊形ABCD為菱形,∠ABC=60°,AB=2,△PCB為正三角形,且平面PCB⊥平面ABCD,M,N分別為BC,PD的中點(diǎn).
(1)求證:MN∥面APB;
(2)求二面角B-NC-P的余弦值;
(3)求四棱錐P-ABCD被截面MNC分成的上下兩部分體積之比.

查看答案和解析>>

同步練習(xí)冊答案