【題目】已知非空集合是由一些函數(shù)組成,滿足如下性質(zhì):對任意,均存在反函數(shù),且;對任意,方程均有解;對任意、,若函數(shù)為定義在上的一次函數(shù),則.

1)若,,均在集合中,求證:函數(shù);

2)若函數(shù))在集合中,求實數(shù)的取值范圍;

3)若集合中的函數(shù)均為定義在上的一次函數(shù),求證:存在一個實數(shù),使得對一切,均有.

【答案】1)見詳解;(2;(3)見詳解;

【解析】

1)由,根據(jù)性質(zhì)①可得,且存在,使得

,由,且為一次函數(shù),根據(jù)性質(zhì)即可證明.

2)由性質(zhì)②,方程,即上有解,可得,

變形,.的關系分類討論,利用基本不等式的性質(zhì)即可求解.

3)任取,,由性質(zhì)①,不妨設,

(若,則,),

由性質(zhì)函數(shù)

由性質(zhì)①:,

由性質(zhì)

由性質(zhì)②方程:,可得,即,即可得證.

1)由,根據(jù)性質(zhì)①可得,且存在,使得

,由,且為一次函數(shù),

根據(jù)性質(zhì)可得:.

2)由性質(zhì)②,方程,即上有解,,

,

,時,,且,

此時沒有反函數(shù),即不滿足性質(zhì)①.

,時,函數(shù)上單調(diào)遞增,此時有反函數(shù),

即滿足性質(zhì)①.

綜上:.

3)任取,,由性質(zhì)①,不妨設,

(若,則),

由性質(zhì)函數(shù),

由性質(zhì)①:,

由性質(zhì)

由性質(zhì)②方程:

,即,

,可得,

,可得,,

由此可知:對于任意兩個函數(shù),,

存在相同的滿足:,

存在一個實數(shù),使得對一切,均有.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且0,若過 A,Q,F(xiàn)2三點的圓恰好與直線相切,過定點 M(0,2)的直線與橢圓C交于G,H兩點(點G在點M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設直線的斜率,在x軸上是否存在點P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請說明理由;(Ⅲ)若實數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某氣象站統(tǒng)計了4月份甲、乙兩地的天氣溫度(單位),統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示,

1)根據(jù)所給莖葉圖利用平均值和方差的知識分析甲,乙兩地氣溫的穩(wěn)定性;

2)氣象主管部門要從甲、乙兩地各隨機抽取一天的天氣溫度,若甲、乙兩地的溫度之和大于或等于,則被稱為甲、乙兩地往來溫度適宜天氣,求甲、乙兩地往來溫度適宜天氣的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,我海監(jiān)船在島海域例行維權巡航,某時刻航行至處,此時測得其北偏東方向與它相距海里的處有一外國船只,且島位于海監(jiān)船正東海里處.

1)求此時該外國船只與島的距離;

2)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方航行.為了將該船攔截在離海里的處(的正南方向),不讓其進入海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值(角度精確到,速度精確到海里/小時).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)若是定義在上的單調(diào)函數(shù),求實數(shù)a的取值范圍;

2)當時,判斷的圖象在其公共點處是否存在公切線?若存在,求滿足條件的a值的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四邊形為正方形,平面,四邊形與四邊形也都為正方形,連接,點的中點,有下述四個結(jié)論:

;     ②所成角為;    

平面;    、與平面所成角為

其中所有正確結(jié)論的編號是(

A.①②B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)討論上的單調(diào)性;

2)證明:上有三個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】西湖小學為了豐富學生的課余生活開設課后少年宮活動,其中面向二年級的學生共開設了三門課外活動課:七巧板、健美操、剪紙.203班有包括奔奔、果果在內(nèi)的5位同學報名參加了少年宮活動,每位同學只能挑選一門課外活動課,已知每門課都有人選,則奔奔和果果選擇了同一個課外活動課的選課方法種數(shù)為(

A.18B.36C.72D.144

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知及拋物線方程為,點在拋物線上,則使得為直角三角形的點個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案