【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至處,此時(shí)測(cè)得其北偏東方向與它相距海里的處有一外國(guó)船只,且島位于海監(jiān)船正東海里處.
(1)求此時(shí)該外國(guó)船只與島的距離;
(2)觀測(cè)中發(fā)現(xiàn),此外國(guó)船只正以每小時(shí)海里的速度沿正南方航行.為了將該船攔截在離島海里的處(在的正南方向),不讓其進(jìn)入島海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值(角度精確到,速度精確到海里/小時(shí)).
【答案】(1)海里;(2)北偏東, 海里/小時(shí).
【解析】
(1)依題意,在中,,由余弦定理求得;
(2)建立以點(diǎn)為坐標(biāo)原點(diǎn),為軸,過(guò)點(diǎn)往正北作垂直的軸.可得的坐標(biāo),設(shè)經(jīng)過(guò)小時(shí)外國(guó)船到達(dá)點(diǎn),結(jié)合,得,列等式求得,則,,再由求得速度的最小值.
解:(1)依題意,在中,,
由余弦定理得,
,
即此時(shí)該外國(guó)船只與島的距離為海里;
(2)建立以點(diǎn)為坐標(biāo)原點(diǎn),為軸,過(guò)點(diǎn)往正北作垂直的軸.
則,,,
設(shè)經(jīng)過(guò)小時(shí)外國(guó)船到達(dá)點(diǎn),
又,得,此時(shí)(小時(shí)).
則,,
監(jiān)測(cè)船的航向東偏北.
海監(jiān)船的速度(海里/小時(shí)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,,四邊形ACEF為正方形,且平面平面ACEF.
(1)證明:;
(2)求平面BEF與平面BCF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左頂點(diǎn)為,右焦點(diǎn)為,斜率為1的直線與橢圓交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)點(diǎn)且與直線平行的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿足,且與橢圓的另一個(gè)交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)數(shù)a,b滿足ab>0且a≠b,由a、b、、按一定順序構(gòu)成的數(shù)列( 。
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家大力提倡科技創(chuàng)新,某工廠為提升甲產(chǎn)品的市場(chǎng)競(jìng)爭(zhēng)力,對(duì)生產(chǎn)技術(shù)進(jìn)行創(chuàng)新改造,使甲產(chǎn)品的生產(chǎn)節(jié)能降耗.以下表格提供了節(jié)能降耗后甲產(chǎn)品的生產(chǎn)產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)的幾組對(duì)照數(shù)據(jù).
(噸) | ||||
(噸) |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(,)
(2)已知該廠技術(shù)改造前生產(chǎn)噸甲產(chǎn)品的生產(chǎn)能耗為噸,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)節(jié)能降耗后生產(chǎn)噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓臺(tái)中,平面過(guò)上下底面的圓心,,點(diǎn)M在上,N為的中點(diǎn),.
(1)求證:平面平面;
(2)當(dāng)時(shí),與底面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知非空集合是由一些函數(shù)組成,滿足如下性質(zhì):①對(duì)任意,均存在反函數(shù),且;②對(duì)任意,方程均有解;③對(duì)任意、,若函數(shù)為定義在上的一次函數(shù),則.
(1)若,,均在集合中,求證:函數(shù);
(2)若函數(shù)()在集合中,求實(shí)數(shù)的取值范圍;
(3)若集合中的函數(shù)均為定義在上的一次函數(shù),求證:存在一個(gè)實(shí)數(shù),使得對(duì)一切,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在軸的正半軸上,過(guò)點(diǎn)的直線與拋物線相交于,兩點(diǎn),且滿足
(1)求拋物線的方程;
(2)若是拋物線上的動(dòng)點(diǎn),點(diǎn)在軸上,圓內(nèi)切于,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),若曲線與曲線存在唯一的公切線,求實(shí)數(shù)的值;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com