已知c>0,且c≠1.設p:函數(shù)y=cx在上單調(diào)遞減;q:函數(shù)f(x)=x2-2cx+1在(
1
2
,+∞)上為增函數(shù).
(1)若p為真,¬q為假,求實數(shù)c的取值范圍.
(2)若“p且q”為假,“p或q”為真,求實數(shù)c的取值范圍.
考點:復合命題的真假,二次函數(shù)的性質,指數(shù)函數(shù)的單調(diào)性與特殊點
專題:
分析:利用指數(shù)函數(shù)與二次函數(shù)的單調(diào)性,分別求出p,q成立的等價條件,然后利用“p∧q”為假,“p∨q”為真,確定實數(shù)c的取值范圍.
解答: 解:若p為真,
∵函數(shù)y=cx在R上單調(diào)遞減,
∴0<c<1(2分)
若q為真,
∵函數(shù)f(x)=x2-2cx+1在(
1
2
,+∞)上為增函數(shù)
f(x)對稱軸為x=c,
∴0<c
1
2
 (4分)
(1)∵p為真,¬q為假,
0<c<1
c≤
1
2

∴實數(shù)c的取值范圍是{c|0<c≤
1
2
}(6分)
(2)又“p或q”為假,“p且q”為真,
∴p真q假或p假q真,
當p真q假時,
0<c<1
c>
1
2
1
2
<c<1

當p假q真時,
c>1
0<c<
1
2
即無解
實數(shù)c的取值范圍是{c|
1
2
<c<1}(12分)
點評:本題主要考查復合命題與簡單命題之間的真假關系的應用,先求出命題p,q成立的等價條件是解決此類問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

平面ACD⊥平面α,B為AC的中點,AC=2,∠CBD=60°,P是α內(nèi)的動點,且P到直線BD的距離為
3
,則△APC面積的最大值為( 。
A、2
3
B、
3
+
2
C、2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,直線y=
3
3
x+2的傾斜角是( 。
A、
π
6
B、
π
3
C、
6
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差列{an}的前n項和為Sn,a1=1,S3=9.
(Ⅰ)求數(shù)列{an}的通項公式:
(Ⅱ)若函數(shù)f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=
π
6
處取得最大值,且最大值為a2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在多面體ABCDEF中,底面ABCD是梯形,且滿足AD=DC=CB=
1
2
AB=a在直角梯形ACEF中,EF∥
1
2
AC,∠ECA=90°,已知二面角E-AC-B是直二面角.
(Ⅰ)求證:BC⊥AF;
(Ⅱ)當在多面體ABCDEF的體積為
3
3
8
a2時,求銳二面角D-EF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對應邊分別是a,b,c滿足b2+c2=bc+a2
(Ⅰ)求角A的大;
(Ⅱ)已知等差數(shù)列{an}的公差不為零,若a1cosA=1,且a2,a4,a8成等比數(shù)列,求{
4
anan+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

綿陽市農(nóng)科所研究出一種新的棉花品種,為監(jiān)測長勢狀況.從甲、乙兩塊試驗田中各抽取了10株棉花苗,量出它們的株高如下(單位:厘米):
37 21 31 20 29 19 32 23 25 33
10 30 47 27 46 14 26 10 44 46
(Ⅰ)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對甲、乙兩塊試驗田中棉花棉的株高進行比較,寫出兩個統(tǒng)計結論;
(Ⅱ)從甲、乙兩塊試驗田中棉花株高在[30,40]中抽4株,記在乙試驗田中取得的棉花苗株數(shù)為ξ,求ξ的分布列和數(shù)學期望Eξ(結果保留分數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某營養(yǎng)師要為某個兒童預定午餐和晚餐,已知一個單位的午餐和晚餐所含的蛋白質和維生素C如下表:
蛋白質 維生素C
午餐 6 6
晚餐 6 10
該兒童這兩餐需要的營養(yǎng)中至少42個單位的蛋白質和54個單位的維生素C,如果一個單位的午餐、晚餐的費用分別是3元和4元,那么要滿足上述的營養(yǎng)要求,并且花費最少,應當為該兒童分別預訂多少個單位的午餐和晚餐?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,已知
m
=(
3
sinA-cosA,2cosA),
n
=(2cosB,
3
sinB-cosB),
m
n

(1)求∠C的大;
(2)若sinA=ksinB,c=7,△ABC的周長為20,求k的值.

查看答案和解析>>

同步練習冊答案