已知函數(shù)f(x)的定義域是[-1,1],求f(log2x)的定義域.
考點:函數(shù)的定義域及其求法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用f(x)定義域,解對數(shù)不等式即可.
解答: 解:因為函數(shù)y=f(x)的定義域是[-1,1],
所以由-1≤log2x≤1,得
1
2
≤x≤2.
即函數(shù)y=f(log2x)的定義域是[
1
2
,2].
點評:本題主要考查抽象函數(shù)定義域的求法,要緊扣定義域的定義,同時,誰占了自變量的位置誰就必須滿足其要求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

lg25=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=cos2x-2
3
sinxcosx,下列命題:
①若x1,x2滿足x1-x2=π,則f(x1)=f(x2)成立;
②f(x)在區(qū)間[-
π
6
,
π
3
]上單調(diào)遞增;
③函數(shù)f(x)的圖象關(guān)于點(
π
12
,0)成中心對稱;
④將函數(shù)f(x)的圖象向左平移
12
個單位后將與y=2sin2x的圖象重合.
其中正確的命題序號
 
(注:把你認為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程sinx+
3
cosx+a=0 在[0,2π)內(nèi)有兩個相異的實數(shù)解α、β,求實數(shù)a的取值范圍及α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)滿足f(x-1)=f(x+1),且當x∈[0,1]時,f(x)=x2,求方程f(x)=(
1
10
x在[0,
10
3
]上的實根個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

符號[x]表示不超過x的最大整數(shù),如[π]=3,[-1.08]=-2,定義函數(shù)f(x)=x-[x],則  下列命題:
①函數(shù)f(x)的定義域為R,值域為[0,1]; 
②方程f(x)=
1
x
有無數(shù)多個解;
③函數(shù)f(x)是周期函數(shù);
④函數(shù)f(x)是增函數(shù).
其中正確的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x-3)ex的單調(diào)遞減區(qū)間是( 。
A、(-∞,2)
B、(0,3)
C、(1,4)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,△ABC是邊長為2的等邊三角形,AA1⊥平面ABC,
D,E,I分別是CC1,AB,AA1的中點.
(1)求證:CE∥平面A1BD
(2)若H為A1B上的動點,CH與平面A1AB所成的最大角的正切值為
15
2
,求側(cè)棱AA1的長.
(3)在(2)的條件下,求二面角I-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線方程為x2-4y2=16,則過點P(2,1)且與該雙曲線只有一個公共點的直線有
 
條.

查看答案和解析>>

同步練習(xí)冊答案