【題目】某大型工廠招聘到一大批新員工.為了解員工對工作的熟練程度,從中隨機(jī)抽取100人組成樣本,統(tǒng)計(jì)他們每天加工的零件數(shù),得到如下數(shù)據(jù):
將頻率作為概率,解答下列問題:
(1)當(dāng)時(shí),從全體新員工中抽取2名,求其中恰有1名日加工零件數(shù)達(dá)到240及以上的概率;
(2)若根據(jù)上表得到以下頻率分布直方圖,估計(jì)全體新員工每天加工零件數(shù)的平均數(shù)為222個(gè),求的值(每組數(shù)據(jù)以中點(diǎn)值代替);
(3)在(2)的條件下,工廠按工作熟練度將新員工分為三個(gè)等級:日加工零件數(shù)未達(dá)200的員工為C級;達(dá)到200但未達(dá)280的員工為B級;其他員工為A級.工廠打算將樣本中的員工編入三個(gè)培訓(xùn)班進(jìn)行全員培訓(xùn):A,B,C三個(gè)等級的員工分別參加高級、中級、初級培訓(xùn)班,預(yù)計(jì)培訓(xùn)后高級、中級、初級培訓(xùn)班的員工每人的日加工零件數(shù)分別可以增加20,30,50.現(xiàn)從樣本中隨機(jī)抽取1人,其培訓(xùn)后日加工零件數(shù)增加量為X,求隨機(jī)變量X的分布列和期望.
【答案】(1)0.42;(2);(3)
【解析】
(1)先求得的值,然后求得員工日加工零件數(shù)達(dá)到及以上的頻率,根據(jù)二項(xiàng)分布概率計(jì)算公式,計(jì)算出所求概率.
(2)先求得的值,然后根據(jù)平均數(shù)的估計(jì)值列方程,求得的值,進(jìn)而求得的值.
(3)的可能取值為,列出分布列并求得數(shù)學(xué)期望.
(1)依題意,故員工日加工零件數(shù)達(dá)到及以上的頻率為,所以相應(yīng)的概率可視為,設(shè)抽取的名員工中,加工零件數(shù)達(dá)到及以上的人數(shù)為,則,故所求概率為.
(2)根據(jù)后三組數(shù)據(jù)對應(yīng)頻率分布直方圖的縱坐標(biāo)為,可知,解得,因此,故根據(jù)頻率分布直方圖得到的樣本平均數(shù)估計(jì)值為,解得,進(jìn)而,故.
(3)由已知可得的可能取值為20,30,50,
且,所以的分布列為
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩圓(圓心,半徑),與(圓心,半徑)不是同心圓,方程相減(消去二次項(xiàng))得到的直線叫做圓 與圓的根軸;
(1)求證:當(dāng)與相交于A,B兩點(diǎn)時(shí),所在直線為根軸;
(2)對根軸上任意點(diǎn)P,求證:;
(3)設(shè)根軸與交于點(diǎn)H,,求證:H分的比;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),以橢圓內(nèi)一點(diǎn)為中點(diǎn)作弦,設(shè)線段的中垂線與橢圓相交于, 兩點(diǎn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得, , , 在同一個(gè)圓上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確命題的個(gè)數(shù)是( )
①若2b=a+c,則a,b,c成等差數(shù)列;
②“a,b,c成等比數(shù)列”的充要條件是“b2=ac”;
③若數(shù)列{an2}是等比數(shù)列,則數(shù)列{an}也是等比數(shù)列;
④若,則
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系xOy中,點(diǎn)A坐標(biāo)為(2,0),點(diǎn)B坐標(biāo)為(4,3),點(diǎn)C坐標(biāo)為(1,3),且(t∈R).
(1) 若CM⊥AB,求t的值;
(2) 當(dāng)0≤ t ≤1時(shí),求直線CM的斜率k和傾斜角θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量與向量的對應(yīng)關(guān)系用表示.
(1) 證明:對于任意向量、及常數(shù)m、n,恒有;
(2) 證明:對于任意向量,;
(3) 證明:對于任意向量、,若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,、分別為邊、的中點(diǎn),沿將折起,點(diǎn)折至處(與不重合),若、分別為線段、的中點(diǎn),則在折起過程中( )
A.可以與垂直
B.不能同時(shí)做到平面且平面
C.當(dāng)時(shí),平面
D.直線、與平面所成角分別為、,、能夠同時(shí)取得最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),且曲線上的點(diǎn)對應(yīng)的參數(shù),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的普通方程和極坐標(biāo)方程;
(2)若曲線上的兩點(diǎn)滿足,過作交于點(diǎn),求證:點(diǎn)在以為圓心的定圓上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com