4.已知函數(shù)f(x)=x2+2x|x-a|,其中a∈R.
(1)當(dāng)a=-1時(shí),在所給坐標(biāo)系中作出f(x)的圖象;
(2)對(duì)任意x∈[1,2],函數(shù)g(x)=-x+14的圖象恒在函數(shù)f(x)圖象的上方,求實(shí)數(shù)a的取值范圍.

分析 (1)當(dāng)a=-1時(shí),作出函數(shù)f(x)=x2+2x|x+1|=$\left\{\begin{array}{l}{{-x}^{2}-2x,x<-1}\\{{3x}^{2}+2x,x≥-1}\end{array}\right.$ 的圖象.
(Ⅱ)由題意,對(duì)任意x∈[1,2],只需[f(x)+x]max<14.分類討論求得[f(x)+x]max ,可得實(shí)數(shù)a的取值范圍.

解答 解:(1)當(dāng)a=-1時(shí),作出函數(shù)f(x)=x2+2x|x-a|=x2+2x|x+1|=$\left\{\begin{array}{l}{{-x}^{2}-2x,x<-1}\\{{3x}^{2}+2x,x≥-1}\end{array}\right.$ 的圖象,
如圖所示:
(2)由題意,對(duì)任意x∈[1,2],f(x)<g(x),
即f(x)+x<14恒成立,
只需[f(x)+x)]max<14.
另一方面,f(x)=$\left\{\begin{array}{l}{{-x}^{2}+2ax,x<a}\\{{3x}^{2}-2ax,x≥a}\end{array}\right.$.
當(dāng)a≥0時(shí),f(x)在(-∞,a)和(a,+∞)上均遞增,∵f(a)=a2,則f(x)在R上遞增,
當(dāng)a<0時(shí),f(x)在(-∞,a)和($\frac{a}{3}$,+∞)上遞增,在(a,$\frac{a}{3}$)上遞減,
故f(x)在x∈[1,2]上恒單調(diào)遞增,從而y=f(x)+x在x∈[1,2]上也恒單調(diào)遞增,
則[f(x)+x]max=f(2)+2=4+4|2-a|+2<14,即|2-a|<2,解得0<a<4,
故實(shí)數(shù)a的取值范圍是(0,4).

點(diǎn)評(píng) 本題主要考查函數(shù)的圖象,函數(shù)與方程的綜合應(yīng)用,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)數(shù)列{an}滿足a2+a4=10,點(diǎn)Pn(n,an)對(duì)任意的n∈N*,都有向量$\overrightarrow{{P_n}{P_{n+1}}}=(1\;,\;3)$,則數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3}{2}{n}^{2}$-$\frac{5}{2}$n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.從圓x2+y2=4內(nèi)任取一點(diǎn)p,則p到直線x+y=1的距離小于$\frac{\sqrt{2}}{2}$的概率$\frac{π+2}{4π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在銳角△ABC中,已知AB=2$\sqrt{3}$,BC=3,其面積S△ABC=3$\sqrt{2}$,則AC=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.“$\frac{1}{x}>1$”是“ex-1<1”的( 。
A.充分且不必要條件B.必要且不充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,|BC|是|AB|、|AC|的等差中項(xiàng),且B(-1,0),C(1,0).
(1)求頂點(diǎn)A的軌跡G的方程;
(2)若G上存在兩點(diǎn)關(guān)于直線l:y=2x+m對(duì)稱,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.函數(shù)f(x)=mx|x-a|-|x|+1,
(1)若m=1,a=0,試討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,且f(x)有且僅有一個(gè)零點(diǎn),求m的取值范圍;
(3)若m=1,g(x)=log2(4x)•log2$\frac{4}{x}$,總存在x1∈R,對(duì)任意x2∈(0,+∞)恒有g(shù)(x2)<f(x1)-x12成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.同時(shí)拋擲三枚均勻的硬幣,則基本事件的總個(gè)數(shù)和恰有2個(gè)正面朝上的基本事件的個(gè)數(shù)分別為(  )
A.3,3B.4,3C.6,3D.8,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)是定義在R上的周期為3的奇函數(shù),且0<x<$\frac{3}{2}$時(shí),f(x)=log2x,則f(-$\frac{1}{4}$)+f(-2)+f(-3)=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案