【題目】已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,則實(shí)數(shù)a的取值范圍是( )
A. [e,+∞)B. [,+∞)
C. [,e2)D. [e2,+∞)
【答案】B
【解析】
將問題逐步進(jìn)行轉(zhuǎn)化.由題意得到對所有的x∈(e,e2]恒成立,由于b≤0,故只需對任意的x∈(e,e2]恒成立,再進(jìn)一步轉(zhuǎn)化為alnx≥x,即對任意的x∈(e,e2]恒成立,只需求出函數(shù)的最大值即可.
由題意可得bx2≤alnx-x對所有的b∈(-∞,0],x∈(e,e2]恒成立,
所以對所有的x∈(e,e2]恒成立.
由于b∈(-∞,0],
所以對任意的x∈(e,e2],都有恒成立,
即alnx≥x對所有的x∈(e,e2]恒成立,
所以對所有的x∈(e,e2]恒成立.
令,則h′(x)=>0,
所以h(x)在區(qū)間(e,e2]上單調(diào)遞增,
故h(x)max=h(e2)=.
所以a≥.
所以實(shí)數(shù)a的取值范圍是[,+∞).
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠過去在生產(chǎn)過程中將污水直接排放到河流中對沿河環(huán)境造成了一定的污染,根據(jù)環(huán)保部門對該廠過去10年的監(jiān)測數(shù)據(jù),統(tǒng)計(jì)出了其每年污水排放量(單位:噸)的頻率分布表:
污水排放量 | ||||
頻率 | 0.1 | 0.3 | 0.4 | 0.2 |
將污水排放量落入各組的頻率作為概率,并假設(shè)每年該廠污水排放量相互獨(dú)立.
(1)若不加以治理,根據(jù)上表中的數(shù)據(jù),計(jì)算未來3年中至少有2年污水排放量不小于200噸的概率;
(2)根據(jù)環(huán)保部門的評估,該廠當(dāng)年污水排放量時,對沿河環(huán)境及經(jīng)濟(jì)造成的損失為5萬元;當(dāng)年污水排放量時,對沿河環(huán)境及經(jīng)濟(jì)造成的損失為10萬元;當(dāng)年污水排放量時,對沿河環(huán)境及經(jīng)濟(jì)造成的損失為20萬元;當(dāng)年污水排放量時,對沿河環(huán)境及經(jīng)濟(jì)造成的損失為50萬元.為了保護(hù)環(huán)境,減少損失,該廠現(xiàn)有兩種應(yīng)對方案:
方案1:若該廠不采取治污措施,則需全部賠償對沿河環(huán)境及經(jīng)濟(jì)造成的損失;
方案2:若該廠采購治污設(shè)備對所有產(chǎn)生的污水凈化達(dá)標(biāo)后再排放,則不需賠償,采購設(shè)備的費(fèi)用為10萬元,每年設(shè)備維護(hù)等費(fèi)用為15萬元,該設(shè)備使用10年需重新更換.在接下來的10年里,試比較上述2種方案哪種能為該廠節(jié)約資金,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,2Sn+2n=an+1﹣2,a2=8,其中n∈N*.
(1)記bn=an+1,求證:{bn}是等比數(shù)列;
(2)設(shè)為數(shù)列{cn}的前n項(xiàng)和,若不等式k>Tn對任意的n∈N*恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是的導(dǎo)函數(shù),為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時,證明:;
(3)當(dāng)時,判斷函數(shù)零點(diǎn)的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率為.直線與軸正半軸和軸分別交于點(diǎn)、,與橢圓分別交于點(diǎn)、,各點(diǎn)均不重合且滿足 ,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,試證明:直線過定點(diǎn)并求此定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為4的正方形,側(cè)面為正三角形且二面角為.
(Ⅰ)設(shè)側(cè)面與的交線為,求證:;
(Ⅱ)設(shè)底邊與側(cè)面所成角的為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身館在2019年7、8兩月推出優(yōu)惠項(xiàng)目吸引了一批客戶.為預(yù)估2020年7、8兩月客戶投入的健身消費(fèi)金額,健身館隨機(jī)抽樣統(tǒng)計(jì)了2019年7、8兩月100名客戶的消費(fèi)金額,分組如下:(單位:元),得到如圖所示的頻率分布直方圖:
(1)若把2019年7、8兩月健身消費(fèi)金額不低于800元的客戶,稱為“健身達(dá)人”,經(jīng)數(shù)據(jù) 處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請補(bǔ)全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“健身達(dá)人”與性別有關(guān)?
健身達(dá)人 | 非健身達(dá)人 | 總計(jì) | |
男 | 10 | ||
女 | 30 | ||
總計(jì) |
(2)為吸引顧客,在健身項(xiàng)目之外,該健身館特別推出健身配套營養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.
方案一:每滿800元可立減100元;
方案二:金額超過800元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折.
若某人打算購買1000元的營養(yǎng)品,請從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
(3)在(2)中的方案二中,金額超過800元可抽獎三次,假設(shè)三次中獎結(jié)果互不影響,且三次中獎的概率為,記為銳角的內(nèi)角,
求證:
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,南昌市召開了全球VR產(chǎn)業(yè)大會,為了增強(qiáng)對青少年VR知識的普及,某中學(xué)舉行了一次普及VR知識講座,并從參加講座的男生中隨機(jī)抽取了50人,女生中隨機(jī)抽取了70人參加VR知識測試,成績分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計(jì)兩類成績?nèi)藬?shù)得到如下的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | a | 35 | 50 |
女生 | 30 | d | 70 |
總計(jì) | 45 | 75 | 120 |
(1)確定a,d的值;
(2)試判斷能否有90%的把握認(rèn)為VR知識的測試成績優(yōu)秀與否與性別有關(guān);
(3)為了宣傳普及VR知識,從該校測試成績獲得優(yōu)秀的同學(xué)中按性別采用分層抽樣的方法,隨機(jī)選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求“到校外宣傳的2名同學(xué)中至少有1名是男生”的概率.
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com