【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c且acosC﹣ =b.
(1)求角A的大小;
(2)若a=1,求△ABC的周長的取值范圍.
【答案】
(1)解:∵acosC﹣ =b,
∴根據(jù)正弦定理,得sinAcosC﹣ sinC=sinB.
又∵△ABC中,sinB=sin(π﹣B)=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC﹣ sinC=sinAcosC+cosAsinC,
化簡得﹣ sinC=cosAsinC,結(jié)合sinC>0可得cosA=﹣
∵A∈(0,π),∴A=
(2)解:∵A= ,a=1,
∴根據(jù)正弦定理 ,可得b= = = sinB,同理可得c= sinC,
因此,△ABC的周長l=a+b+c=1+ sinB+ sinC
=1+ [sinB+sin( ﹣B)]=1+ [sinB+( cosB﹣ sinB)]
=1+ ( sinB+ cosB)=1+ sin(B+ ).
∵B∈(0, ),得B+ ∈( , )
∴sin(B+ )∈( ,1],可得l=a+b+c=1+ sin(B+ )∈(2,1+ ]
即△ABC的周長的取值范圍為(2,1+ ]
【解析】(1)根據(jù)正弦定理化簡題中等式,得sinAcosC﹣ sinC=sinB.由三角形的內(nèi)角和定理與誘導(dǎo)公式,可得sinB=sin(A+C)=sinAcosC+cosAsinC,代入前面的等式解出cosA=﹣ ,結(jié)合A∈(0,π)可得角A的大。唬2)根據(jù)A= 且a=1利用正弦定理,算出b= sinB且c= sinC,結(jié)合C= ﹣B代入△ABC的周長表達(dá)式,利用三角恒等變換化簡得到△ABC的周長關(guān)于角B的三角函數(shù)表達(dá)式,再根據(jù)正弦函數(shù)的圖象與性質(zhì)加以計算,可得△ABC的周長的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改進(jìn)后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的回歸方程 = x+ ;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤? (參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)計算回歸系數(shù) , .公式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與曲線的普通方程;
(2)若用代換曲線的普通方程中的得到曲線的方程,若分別是曲線和曲線上的動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c. (Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠定期購買面粉.已知該廠每天需用面粉6t,每噸面粉的價格為1800元,面粉的保管等其他費用為平均每噸每天3元,購面粉每次需支付運費900元.
(1)求該廠多少天購買一次面粉,才能使平均每天所支付的總費用最少?
(2)若提供面粉的公司規(guī)定:當(dāng)一次購買面粉不少于210t時,其價格可享受9折優(yōu)惠(即原價的90%),問該廠是否考慮利用此優(yōu)惠條件?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了考核甲,乙兩部門的工作情況,隨機訪問了50位市民,根據(jù)這50位市民對這兩部門的評分(評分越高表明市民的評價越高),繪制莖葉圖如下:
(1)分別估計該市的市民對甲,乙兩部門評分的中位數(shù);
(2)分別估計該市的市民對甲,乙兩部門的評分高于90的概率;
(3)根據(jù)莖葉圖分析該市的市民對甲,乙兩部門的評價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬在2017年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費用(單位:萬元)()滿足( 為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬元.每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2017年該產(chǎn)品的利潤(單位:萬元)表示為年促銷費用(單位:萬元)的函數(shù);
(2)該廠家2017年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),則b的取值范圍為( )
A.
B.(2﹣ ,2+ )
C.[1,3]
D.(1,3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com