已知(3x+1)-(1-x)<0,求解集.
考點:其他不等式的解法
專題:不等式的解法及應用
分析:解一元一次不等式,求得它的解集.
解答: 解:不等式(3x+1)-(1-x)<0,即 4x<0,求得x<0,
可得原不等式的解集為(-∞,0).
點評:本題主要考查一元一次不等式的解法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

心理學家發(fā)現(xiàn),學生對概念的接受能力y與提出概念所用的時間x(單位:分)之間滿足函數(shù)關系式y(tǒng)=-0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越強.
(1)x在什么范圍內(nèi),學生的接受能力逐步增強?x在什么范圍內(nèi),學生的接受能力逐步降低?
(2)第10分鐘時,學生的接受能力是多少?
(3)第幾分鐘時,學生的接受能力最強?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班同學利用寒假進行社會實踐,對年齡段在[10,60]的人生活習慣是否符合環(huán)保理念進行調(diào)查,現(xiàn)隨機抽取n人進行數(shù)據(jù)分析,得到如下頻率分布表和頻率分布直方圖;
(1)求出頻率分布表中n,x,y的值;
(2)現(xiàn)從第三、四、五組中,采用分層抽樣法抽取12人參加戶外環(huán)保體驗活動,則從這三組中應各抽取多少人?
(3)從第三、四、五組中采用分層抽樣法抽取12人參加項學習活動,從這12名中再選取3人作為領隊,記這3名領隊中在第三四組內(nèi)人數(shù)為X,求X分布列和期望EX.
組數(shù)分組人數(shù)頻率
第一組[10,20)5 
第二組[20,30) x
第三組[30,40)  
第四組[40,50)y 
第五組[50,60] 
合計 n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知g(x)=ax+1,f(x)=
2 x-1,0≤x≤2
-x 2,-2≤x≤0
,對?x1∈[-2,2],?x2∈[-2,2].,使g(x1)=f(x2)成立,則a的取值范圍是(  )
A、[-1,+∞)
B、[-1,1]
C、(0,1]
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=a•(
1
2
n(a≠0),試判斷數(shù)列的增減性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|(x-2)[x-(3a+1)<0]},B={x|
x-a
x-(a2+1)
<0}.
(Ⅰ)當a=2時,求集合A∪B;
(Ⅱ)若B⊆A成立的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設函數(shù)f(x)=|x-
5
2
|+|x-a|,x∈R,若關于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的最大值;
(2)已知正數(shù)x,y,z滿足x+2y+3z=1,求
3
x
+
2
y
+
1
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓過A(-1,5),B(5,5),C(6,-2)三點,求圓的方程,并畫出圓形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=2,|
b
|=3,(
a
-
2b
)•(
2a
+
b
)=-1,則
a
b
的夾角為
 

查看答案和解析>>

同步練習冊答案