5.已知集合A={a,a2},B={1,b},若A=B,則a=-1,b=-1.

分析 根據(jù)集合相等的定義結合集合的性質求出a,b的值即可.

解答 解:若a=1,則a2=1,不符合互異性原則,
∴a2=1,a=-1,則b=-1,
故答案為:-1,-1.

點評 本題考查了相等集合的定義,考查集合的性質,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.設f(x)=$\frac{2co{s}^{3}x-si{n}^{2}(360°-x)+2sin(90°+x)+1}{2+2co{s}^{2}(180°+x)+cos(-x)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.7個人坐成-排照相:
(1)如果甲、乙兩人必須坐在兩端,有多少種坐法?
(2)如果甲不坐在兩端.有多少種坐法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設f(x)=$\frac{si{n}^{2}(2x+\frac{π}{4})+a}{sin(2x+\frac{π}{4})}$,0≤x≤$\frac{π}{4}$,a∈R.
(1)當a=$\frac{3}{4}$時,求f(x)的最小值;
(2)若f(x)的最小值是7,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若直線2ax-by+2=0(其中a,b為正實數(shù))經(jīng)過圓C:x2+y2+2x-4y+1=0的圓心,則$\frac{4}{a}+\frac{1}$的最小值為(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{4{x}^{2}-{y}^{2}≥0}\\{x+ay+b≤0}\\{x≥0}\end{array}\right.$,z=x-y的最大值、最小值分別為M、m,且M-m=1,則a+b的取值范圍為( 。
A.[$\frac{3\sqrt{3}}{2}$-2,$\frac{\sqrt{3}}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{2}$)C.[$\sqrt{6}$-3,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{23}{10}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設p:存在x∈(1,+∞),使函數(shù)g(x)=log2(tx2+2x-2)有意義,若¬p為假命題,則t的取值范圍為[0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$,若存在常數(shù)t使得方程f(x)=t有兩個不等的實根x1,x2(x1<x2),那么x1•f(x2)的取值范圍為( 。
A.[$\frac{3}{4}$,1)B.[$\frac{1}{8}$,$\frac{\sqrt{3}}{6}$)C.[$\frac{3}{16}$,$\frac{1}{2}$)D.[$\frac{3}{8}$,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.公差為1的等差數(shù)列{an}中,Sn為其前n項的和,若僅S9在所有的Sn中取最小值,則首項a1的取值范圍為(  )
A.[-10,-9]B.(-10,-9)C.[-9,-8]D.(-9,-8)

查看答案和解析>>

同步練習冊答案