【題目】某環(huán)線地鐵按內(nèi)、外環(huán)線同時運(yùn)行,內(nèi)、外環(huán)線的長均為30千米(忽略內(nèi)、外環(huán)線長度差異).
(1)當(dāng)9列列車同時在內(nèi)環(huán)線上運(yùn)行時,要使內(nèi)環(huán)線乘客最長候車時間為10分鐘,求內(nèi)環(huán)線列車的最小平均速度;
(2)新調(diào)整的方案要求內(nèi)環(huán)線列車平均速度為25千米/小時,外環(huán)線列車平均速度為30千米/小時.現(xiàn)內(nèi)、外環(huán)線共有18列列車全部投入運(yùn)行,要使內(nèi)外環(huán)線乘客的最長候車時間之差不超過1分鐘,向內(nèi)、外環(huán)線應(yīng)各投入幾列列車運(yùn)行?
【答案】(1)20千米/小時;(2)內(nèi)環(huán)線投入10列列車運(yùn)行,外環(huán)線投入8列列車.
【解析】
(1)設(shè)內(nèi)環(huán)線列車的平均速度為v千米/小時,根據(jù)內(nèi)環(huán)線乘客最長候車時間為10分鐘,可得,從而可求內(nèi)環(huán)線列車的最小平均速度;(2)設(shè)內(nèi)環(huán)線投入x列列車運(yùn)行,則外環(huán)線投入(18﹣x)列列車運(yùn)行,分別求出內(nèi)、外環(huán)線乘客最長候車時間,,根據(jù),解不等式,即可求得結(jié)論.
(1)設(shè)內(nèi)環(huán)線列車的平均速度為v千米/小時,則要使內(nèi)環(huán)線乘客最長候車時間為10分鐘,可得
∴v≥20
∴要使內(nèi)環(huán)線乘客最長候車時間為10分鐘,內(nèi)環(huán)線列車的最小平均速度是20千米/小時;
(2)設(shè)內(nèi)環(huán)線投入x列列車運(yùn)行,則外環(huán)線投入(18﹣x)列列車運(yùn)行,內(nèi)、外環(huán)線乘客最長候車時間分別為t1,t2分鐘,
則,
∴
∴
∴
∵x∈N+,∴x=10
∴當(dāng)內(nèi)環(huán)線投入10列列車運(yùn)行,外環(huán)線投入8列列車時,內(nèi)外環(huán)線乘客的最長候車時間之差不超過1分鐘.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).M是曲線上的動點(diǎn),將線段OM繞O點(diǎn)順時針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學(xué),英語,物理,化學(xué)各一節(jié)課.要求語文與化學(xué)相鄰,數(shù)學(xué)與物理不相鄰,且數(shù)學(xué)課不排第一節(jié),則不同排課法的種數(shù)是
A. 24B. 16C. 8D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)求的解析式;
(2)關(guān)于的不等式的解集為一切實(shí)數(shù),求實(shí)數(shù)的取值范圍;
(3)關(guān)于的不等式的解集中的正整數(shù)解恰有個,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別相交于點(diǎn)B、C,經(jīng)過B、C兩點(diǎn)的拋物線與軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對稱軸為直線.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)連結(jié)AC.請問在軸上是否存在點(diǎn)Q,使得以點(diǎn)P、B、Q為頂點(diǎn)的三角形與△ABC 相似,若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把邊長為a的等邊三角形鐵皮剪去三個相同的四邊形(如圖陰影部分)后,用剩余部分做成一個無蓋的正三棱柱形容器(不計(jì)接縫),設(shè)容器的高為x,容積為.
(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(2)求當(dāng)x為多少時,容器的容積最大?并求出最大容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對定義域?yàn)?/span>D的函數(shù),若存在距離為d的兩條平行直線和.使得當(dāng)時,恒成立,則稱函數(shù)在有一個寬度為d的通道有下列函數(shù):(1);(2);(3);(4).其中在上通道寬度為1的函數(shù)是( )
A. (1)(3) B. (2)(3) C. (1)(3)(4) D. (2)(3)(4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com