【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學(xué),英語,物理,化學(xué)各一節(jié)課.要求語文與化學(xué)相鄰,數(shù)學(xué)與物理不相鄰,且數(shù)學(xué)課不排第一節(jié),則不同排課法的種數(shù)是
A. 24B. 16C. 8D. 12
【答案】B
【解析】
根據(jù)題意,可分三步進行(1)要求語文與化學(xué)相鄰,將語文與化學(xué)看成一個整體,考慮其順序;(2)將這個整體與英語全排列,排好后,有3個空位;(3)數(shù)學(xué)課不排第一行,有2個空位可選,在剩下的2個空位中任選1個,得數(shù)學(xué)、物理的安排方法,最后利用分步計數(shù)原理,即可求解。
根據(jù)題意,可分三步進行
(1)要求語文與化學(xué)相鄰,將語文與化學(xué)看成一個整體,考慮其順序,有種情況;
(2)將這個整體與英語全排列,有中順序,排好后,有3個空位;
(3)數(shù)學(xué)課不排第一行,有2個空位可選,在剩下的2個空位中任選1個,
安排物理,有2中情況,則數(shù)學(xué)、物理的安排方法有種,
所以不同的排課方法的種數(shù)是種,故選B。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)m=1時,若方程在區(qū)間上有唯一的實數(shù)解,求實數(shù)a的取值范圍;
(3)當(dāng)m>0時,若對于區(qū)間[1,2]上的任意兩個實數(shù)x1,x2,且x1<x2,都有成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知角α的頂點與原點O重合,始邊與x軸的非負(fù)半軸重合,它的終邊上有一點P的坐標(biāo)是(3a,a),其中a≠0.
(1)求cos(α)的值;
(2)若tan(2α+β)=1,求tanβ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為1的菱形的兩對角線交于,過作A2B2∥A1B1交于連結(jié)交于,過作A3B3∥A1B1交于,…,這樣作下去得以為原點,所在直線為軸,建立平面直角坐標(biāo)系,設(shè)以為半徑,圓心在,軸上的一列圓依次相外切(即與外切,),若圓T1與拋物線相切.求證:所有的圓都與拋物線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲,乙,丙,丁四位同學(xué)課余參加巴蜀愛心社和巴蜀文學(xué)風(fēng)的活動,每人參加且只能參加一個社團的活動,并且參加每個社團都是等可能的.
(1)求巴蜀愛心社和巴蜀文學(xué)風(fēng)都至少有1人參加的概率;
(2)求甲,乙在同一個社團,丙,丁不在同一個社團的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)已知在△ABC中,A,B,C的對邊分別為a,b,c,若,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空間中個平面,其中任意三個平面無公垂面.那么,下述四個結(jié)論
1沒有任何兩個平面互相平行;
2沒有任何三個平面相交于一條直線;
3平面間的任意兩條交線都不平行;
4平面間的每一條交線均與個平面相交.
其中,正確的各數(shù)為( ).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com