【題目】考拉茲猜想又名3n+1猜想,是指對于每一個正整數(shù),如果它是奇數(shù),則對它乘3再加1;如果它是偶數(shù),則對它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運行相應程序,輸出的結果i=(
A.4
B.5
C.6
D.7

【答案】B
【解析】解:當a=4時,不滿足退出循環(huán)的條件,進入循環(huán)后,由于a值不滿足“a是奇數(shù)”,故a=5,i=2; 當a=5時,不滿足退出循環(huán)的條件,進入循環(huán)后,由于a值滿足“a是奇數(shù)”,故a=16,i=3;
當a=16時,不滿足退出循環(huán)的條件,進入循環(huán)后,由于a值不滿足“a是奇數(shù)”,故a=8,i=4;
當a=8時,不滿足退出循環(huán)的條件,進入循環(huán)后,由于a值不滿足“a是奇數(shù)”,故a=4,i=5;
當a=4時,滿足退出循環(huán)的條件,故輸出結果為:5
故選B.
由已知中的程序框圖可知:該程序的功能是利用條件結構和循環(huán)結構的嵌套計算并輸出i值,模擬程序的運行過程可得答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=aln(x2+1)+bx存在兩個極值點x1 , x2
(1)求證:|x1+x2|>2;
(2)若實數(shù)λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓軸,軸的正半軸分別交于A,B兩點,原點O到直線AB的距離為該橢圓的離心率為

(1)求橢圓的方程

(2)是否存在過點P(的直線與橢圓交于M,N兩個不同的點,使成立?若存在,求出的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是某市3月1日至14日的空氣質量指數(shù)趨勢圖,空氣質量指數(shù)小于100表示空氣質量優(yōu)良,空氣質量指數(shù)大于200表示空氣重度污染,某人隨機選擇3月1日至3月15日中的某一天到達該市,并停留2天.

(Ⅰ)求此人到達當日空氣質量優(yōu)良的概率;

(Ⅱ)求此人在該市停留期間只有1天空氣重度污染的概率

(Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質量指數(shù)方差最大?(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+bx﹣c,f(x)在點(1,f(1))處的切線方程為x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的單調區(qū)間;
(3)若在區(qū)間 內,恒有f(x)≥2lnx+kx成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A1 , B1分別是邊BA,CB的中點,A2 , B2分別是線段A1A,B1B的中點,…,An , Bn分別是線段 的中點,設數(shù)列{an},{bn}滿足:向量 ,有下列四個命題,其中假命題是(
A.數(shù)列{an}是單調遞增數(shù)列,數(shù)列{bn}是單調遞減數(shù)列
B.數(shù)列{an+bn}是等比數(shù)列
C.數(shù)列 有最小值,無最大值
D.若△ABC中,C=90°,CA=CB,則 最小時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}.滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項分別加上1,1,3后成等比數(shù)列,an+2log2bn=﹣1.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式;
(Ⅱ)求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C過點,且與圓外切于點,x軸上的一個動點.

求圓C的標準方程;

當圓C上存在點Q,使,求實數(shù)m的取值范圍;

時,過P作直線PAPB與圓C分別交于異于點P的點A,B兩點,且求證:直線AB恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= 的圖象可能是(

A.(1)(3)
B.(1)(2)(4)
C.(2)(3)(4)
D.(1)(2)(3)(4)

查看答案和解析>>

同步練習冊答案