【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級),相對應(yīng)空氣質(zhì)量的七個(gè)類別,指數(shù)越大,說明污染的情況越嚴(yán)重,對人體危害越大.

指數(shù)

級別

類別

戶外活動(dòng)建議

優(yōu)

可正;顒(dòng)

輕微污染

易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動(dòng).

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng).

中度重污染

重污染

健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動(dòng).

現(xiàn)統(tǒng)計(jì)邵陽市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數(shù);

(2)求這60天空氣質(zhì)量指數(shù)的平均值;

(3)將頻率分布直方圖中的五組從左到右依次命名為第一組,第二組,…,第五組.從第一組和第五組中的所有天數(shù)中抽出兩天,記它們的空氣質(zhì)量指數(shù)分別為 ,求事件的概率.

【答案】1;(2;(3.

【解析】(1)依題意知,輕度污染即空氣質(zhì)量指數(shù)在之間,共有天. 

(2)由直方圖知60天空氣質(zhì)量指數(shù)的平均值為

(3)第一組和第五組的天數(shù)分別為天, 天,

則從9天中抽出2天的一切可能結(jié)果的基本事件有36種,

知兩天只能在同一組中,而兩天在同一組中的基本事件有18種,

表示這一事件,則概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cos,直線l的參數(shù)方程為 (t為參數(shù)),直線l與圓C交于AB兩點(diǎn),P是圓C上不同于AB的任意一點(diǎn).

(1)求圓心的極坐標(biāo);

(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:對于實(shí)數(shù)和兩定點(diǎn),在某圖形上恰有個(gè)不同的點(diǎn),使得,稱該圖形滿足“度契合”.若邊長為4的正方形中,,且該正方形滿足“4度契合”,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,數(shù)列項(xiàng)和為.

(1)若數(shù)列是首項(xiàng)為正數(shù),公比為的等比數(shù)列.

①求證:數(shù)列為等比數(shù)列;

②若對任意恒成立,求的值;

(2)已知為遞增數(shù)列,即.若對任意,數(shù)列中都存在一項(xiàng)使得,求證:數(shù)列為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資人打算投資甲乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測、乙項(xiàng)目可能的最大盈利率分別為100%50%,可能的最大虧損率分別為30%10%,投資人計(jì)劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元問投資人對甲、乙兩個(gè)項(xiàng)目各投資多少萬元才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)若對任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 左焦點(diǎn),左頂點(diǎn),橢圓上一點(diǎn)滿足軸,且點(diǎn)軸下方, 連線與左準(zhǔn)線交于點(diǎn),過點(diǎn)任意引一直線與橢圓交于,連結(jié)交于點(diǎn)若實(shí)數(shù)滿足: , .

(1)求的值;

(2)求證:點(diǎn)在一定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,△PAD為正三角形,平面PAD⊥平面ABCD,ABCD,ABAD,CD=2AB=2AD=4.

(1)求證:平面PCD⊥平面PAD

(2)求三棱錐PABC的體積;

(3)在棱PC上是否存在點(diǎn)E,使得BE∥平面PAD?若存在,

請確定點(diǎn)E的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,a4=2且,數(shù)列滿足 ,

(1)證明:數(shù)列{an}為等差數(shù)列;

(2)是否存在正整數(shù),(1<),使得成等比數(shù)列,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案