【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

【答案】(1)見(jiàn)解析;(2).

【解析】分析求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間利用函數(shù)的單調(diào)性可求出函數(shù)的極值;(2) 上單調(diào)遞增等價(jià)于上恒成立,求得導(dǎo)數(shù)和單調(diào)區(qū)間,討論與極值點(diǎn)的關(guān)系,結(jié)合單調(diào)性,運(yùn)用參數(shù)分離和解不等式可得范圍.

詳解:(1)當(dāng)時(shí):的定義域?yàn)?/span>

,得

當(dāng)時(shí),,上單調(diào)遞增;

當(dāng)時(shí),上單調(diào)遞減;

當(dāng)時(shí),的極大值為,無(wú)極小值.

(2)

上單調(diào)遞增

上恒成立,

只需上恒成立

上恒成立

,則:

①若時(shí)

上恒成立

上單調(diào)遞減

,

這與矛盾,舍去

②若時(shí)

當(dāng)時(shí),上單調(diào)遞減;

當(dāng)時(shí),上單調(diào)遞增;

當(dāng)時(shí),有極小值,也是最小值,

綜上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體中,側(cè)面對(duì)角線,上分別有一點(diǎn)E,F,且,則直線EF與平面ABCD所成的角的大小為(

A.B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖的算法框圖,輸出的結(jié)果S的值為(

A.
B.0
C.
D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面,為矩形,分別為的中點(diǎn),.

(1)求證:平面;

(2)求證:面平面;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)分別選派3,1,2名運(yùn)動(dòng)員參加某次比賽,甲協(xié)會(huì)運(yùn)動(dòng)員編號(hào)分別為,,乙協(xié)會(huì)編號(hào)為,丙協(xié)會(huì)編號(hào)分別為,,若從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.

(1)用所給編號(hào)列出所有可能抽取的結(jié)果;

(2)求丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率;

(3)求參加雙打比賽的兩名運(yùn)動(dòng)員來(lái)自同一協(xié)會(huì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄,從中任意取出一個(gè),則取出的小正方體兩面涂有油漆的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點(diǎn),且2BE=EP.

(1)證明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于有表格中的數(shù)據(jù),線性相關(guān)由最小二乘法得.

2

4

5

6

8

30

40

60

50

70

(1)求的線性回歸方程;

(2)現(xiàn)有第二個(gè)線性模型:,且.若與(1)的線性模型比較,哪一個(gè)線性模型擬合效果比較好,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中“竹九節(jié)”問(wèn)題曰:“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升,問(wèn)中間兩節(jié)欲均容各多少?”其意為:“現(xiàn)有一根9節(jié)的竹子,自上而下的容積成等差數(shù)列,下面3節(jié)容量為4升,上面4節(jié)容積為3升,問(wèn)中間2節(jié)各多少容積?”則中間2節(jié)容積合計(jì)________

查看答案和解析>>

同步練習(xí)冊(cè)答案