【題目】如圖,已知平面,為矩形,分別為的中點(diǎn),.

(1)求證:平面

(2)求證:面平面;

(3)求點(diǎn)到平面的距離.

【答案】(1)證明見解析;(2)證明見解析;(3).

【解析】

(1)利用線面平行的判定定理,尋找面PAD內(nèi)的一條直線平行于MN,即可證出;(2)先證出一條直線垂直于面PCD,依據(jù)第一問結(jié)論知,MN也垂直于面PCD,利用面面垂直的判定定理即可證出;

3)依據(jù)等積法,即可求出點(diǎn)到平面的距離。

證明:(1)取中點(diǎn)為,連接分別為的中點(diǎn),

是平行四邊形,

平面,平面,∴平面

證明:(2)因?yàn)?/span>平面,所以,而,

PAD,而 ,所以,

,的終點(diǎn),所以

由于平面,又由(1)知,

平面,平面,∴平面平面

解:(3),

,

則點(diǎn)到平面的距離為

(也可構(gòu)造三棱錐

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f( )|對(duì)x∈R恒成立,且f( )>f(π),則f(x)的單調(diào)遞增區(qū)間是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+m|.
(Ⅰ) 解關(guān)于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)當(dāng)x≠0時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各名,將男性、女性使用微信的時(shí)間分成組:,,,,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)根據(jù)女性頻率分布直方圖估計(jì)女性使用微信的平均時(shí)間;

(2)若每天玩微信超過小時(shí)的用戶列為微信控,否則稱其為非微信控,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認(rèn)為微信控性別有關(guān)?

參考公式:,其中

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某精密儀器生產(chǎn)有兩道相互獨(dú)立的先后工序,每道工序都要經(jīng)過相互獨(dú)立的工序檢查,且當(dāng)?shù)谝坏拦ば驒z查合格后才能進(jìn)入第二道工序,兩道工序都合格,產(chǎn)品才完全合格,.經(jīng)長期監(jiān)測發(fā)現(xiàn),該儀器第一道工序檢查合格的概率為 ,第二道工序檢查合格的概率為 ,已知該廠三個(gè)生產(chǎn)小組分別每月負(fù)責(zé)生產(chǎn)一臺(tái)這種儀器.
(1)求本月恰有兩臺(tái)儀器完全合格的概率;
(2)若生產(chǎn)一臺(tái)儀器合格可盈利5萬元,不合格則要虧損1萬元,記該廠每月的贏利額為ξ,求ξ的分布列和每月的盈利期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱函數(shù)上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;

(3)若,函數(shù)上的上界是,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為矩形,的中點(diǎn),且,,.

(1)求證:平面

(2)若點(diǎn)為線段上一點(diǎn),且,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某氣象儀器研究所按以下方案測試一種“彈射型”氣象觀測儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測點(diǎn)A、B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音的時(shí)間比在B地晚秒. A地測得該儀器彈至最高點(diǎn)H時(shí)的仰角為30°.

(1)求A、C兩地的距離;

(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)

查看答案和解析>>

同步練習(xí)冊答案