3.已知等差數(shù)列{an}中,a3=5,a8=20,求{an}的通項(xiàng)公式.

分析 由已知求出等差數(shù)列的公差,代入an=am+(n-m)d求出等差數(shù)列的通項(xiàng)公式.

解答 解:在等差數(shù)列{an}中,由a3=5,a8=20,得$d=\frac{{a}_{8}-{a}_{3}}{8-3}=\frac{20-5}{5}=3$,
∴an=a3+(n-3)d=5+3(n-3)=3n-4.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=2cosx-$\frac{1}{x}$,若$\frac{π}{3}$<a<b<$\frac{5π}{6}$,則( 。
A.f(a)>f(b)B.f(a)<f(b)C.f(a)=f(b)D.f(a)f(b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求函數(shù)y=x${\;}^{\frac{1}{{m}^{2}+m+1}}$,(m∈N*)的定義域,值域,奇偶性,單調(diào)性并畫(huà)出草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.判斷下列函數(shù)的奇偶性:
(1)y=lg$\frac{2-x}{2+x}$;
(2)f(x)=ln(1+e2x)-x;
(3)f(x)=log2($\sqrt{{x}^{2}+1}$-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.寫(xiě)出下列命題的逆命題、否命題、逆否命題,并判斷它們的真假:
(1)若x=y,則|x|=|y|;
(2)如果b≤0,那么方程x2-2bx+b2+b=0有實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若loga-1(2x-1)>loga-1(x-1),則有(  )
A.a>1,x>0B.a>1,x>1C.a>2,x>0D.a>2,x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥0}\\{x+y≤0}\\{2x+y+2≤0}\end{array}\right.$,求ω=$\frac{y-1}{x-1}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.關(guān)于x的不等式x2-2ax+a>0對(duì)x∈R恒成立的-個(gè)必要不充分條件是( 。
A.0<a<1B.0≤a≤1C.0<a≤1D.a≥1或a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=|1-$\frac{1}{x}$|,(x>0).
(1)當(dāng)0<a<b,且f(a)=f(b),求證:$\frac{1}{a}$+$\frac{1}$=2;
(2)是否存在實(shí)數(shù)a,b(1≤a≤b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在則求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案