【題目】已知函數(shù),

1)若存在極大值,證明:;

2)若關于的不等式在區(qū)間上恒成立,求的取值范圍.

【答案】1)證明見解析;(2

【解析】

1.(x∈(0+∞)).對a分類討論,即可得出單調(diào)性極值.進而證明結(jié)論.

2)令hx=fx+ex-1-1=lnx-ax+a+ex-1-1,x[1,+∞),h1=0,,對a分類討論,利用導數(shù)研究函數(shù)的單調(diào)性、極值與最值即可得出.

1

時,,單調(diào)遞增,不存在極大值,

所以,上單調(diào)遞增,在上單調(diào)遞減,

的極大值為

,

上單調(diào)遞減,在上單調(diào)遞增,

所以的極大值大于等于0

2)設,

,,

所以單調(diào)遞增,

上單調(diào)遞減,在上單調(diào)遞增,

,,

,則,恒成立,

此時,函數(shù)上單調(diào)遞增,,滿足條件.

,則,所以存在使得

即在內(nèi),有,上單調(diào)遞減,

不滿足條件.

綜上,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,離心率為,點是橢圓上的一個動點,且面積的最大值為.

1)求橢圓的方程;

2)過點作直線交橢圓、兩點,過點作直線的垂線交圓:于另一點.的面積為3,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在實數(shù),使成立,則稱的不動點.

1)當時,求的不動點;

2)若對于任何實數(shù),函數(shù)恒有兩相異的不動點,求實數(shù)的取值范圍;

3)在(2)的條件下,若的圖象上、兩點的橫坐標是函數(shù)的不動點,且直線是線段的垂直平分線,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)若,求曲線的交點坐標;

2)過曲線上任一點作與夾角為30°的直線,交于點,且的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知AB分別為橢圓Cab0)的左右頂點,P為橢圓C上異于A,B的任意一點,O為坐標原點,=﹣4,PAB的面積的最大值為

1)求橢圓C的方程;

2)若橢圓C上存在兩點M,N,分別滿足OMPAONPB,求|OM||ON|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù),aR),以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ2cosθ

1)求直線l的普通方程及曲線C的直角坐標方程;

2)若直線l過點P11)且與曲線C交于AB兩點,求|PA|+|PB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x3(a0,且a≠1)

1)討論f(x)的奇偶性;

2)求a的取值范圍,使f(x)0在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在圓 上,點在圓 上,則下列說法錯誤的是

A. 的取值范圍為

B. 取值范圍為

C. 的取值范圍為

D. ,則實數(shù)的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在斜三棱柱中,,側(cè)面是邊長為4的菱形,,分別為、的中點.

1)求證:平面;

2)若,求二面角的正弦值.

查看答案和解析>>

同步練習冊答案