9.已知sin($\frac{π}{4}$+2α)sin($\frac{π}{4}$-2α)=$\frac{1}{4}$,則2sin22α-1=-$\frac{1}{2}$.

分析 已知等式利用積化和差公式化簡(jiǎn),整理求出cos4α的值,原式變形后,利用二倍角的余弦函數(shù)公式化簡(jiǎn),即可求出值.

解答 解:已知等式化簡(jiǎn)得:-$\frac{1}{2}$(cos$\frac{π}{2}$-cos4α)=$\frac{1}{4}$,
整理得:cos4α=$\frac{1}{2}$,
則原式=-(1-2sin22α)=-cos4α=-$\frac{1}{2}$,
故答案為:-$\frac{1}{2}$

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知銳角△ABC中,角A、B、C對(duì)應(yīng)的邊分別為a、b、c,tanA=$\frac{\sqrt{3}bc}{b^2+c^2-a^2}$.
(1)求A的大;
(2)設(shè)函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)-cosωx,(ω>0),且f(x)圖象上相領(lǐng)兩最高點(diǎn)間的距離為π,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若集合A={x|x2-4x≤0},B={x|x2-2x>0},則A∩B=(2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=ax+m-n(a>0)且a≠1)恒過定點(diǎn)(3,1),則m+n=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-4x+4
(1)若g(x)=f(x)-cx為偶函數(shù),求實(shí)數(shù)c的值;
(2)若h(x)=$\frac{f(x)}{x}$,用定義證明函數(shù)h(x)在區(qū)間[2,+∞)上是遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{4}^{x},x≤\frac{1}{2}}\\{lo{g}_{a}x,x>\frac{1}{2}}\end{array}\right.$的最大值是2,則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$]B.(1,$\sqrt{2}$)C.(0,1)D.(0,$\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.三角形ABC中,a(cosB+cosC)=b+c,
(1)求證A=$\frac{π}{2}$
(2)若三角形ABC的外接圓半徑為1,求三角形ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且cosB=$\frac{3}{5}$,cosC=$\frac{5}{13}$,c=3,則a=$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求證:1+cosα+2$si{n}^{2}\frac{α}{2}$=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案