分析 (1)由x+2≠0,且x+5≥0,即可得到定義域;
(2)由x2-4≥0,且4-x2≥0,且x2-9≠0,即可得到定義域;
(3)由x-5≥0且|x|≠7,即可得到定義域.
解答 解:(1)由x+2≠0,且x+5≥0,
可得x≥-5且x≠-2,
則定義域為{x|x≥-5且x≠-2};
(2)由x2-4≥0,且4-x2≥0,且x2-9≠0,
解得x=±2,
則定義域為{-2,2};
(3)由x-5≥0且|x|≠7,
解得x≥5且x≠7,
則定義域為{x|x≥5且x≠7}.
點評 本題考查函數(shù)的定義域的求法,注意分式分母不為0,偶次根式被開方式非負(fù),考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | 4 | D. | 2或-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{10}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com