2.已知兩定點A(-1,0)和B(1,0),動點P(x,y)在直線l:y=x+3上移動,橢圓C以A,B為焦點且經(jīng)過點P,則橢圓C的離心率的最大值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{2\sqrt{10}}{5}$

分析 求出A的對稱點的坐標(biāo),然后求解橢圓長軸長的最小值,然后求解離心率即可.

解答 解:A(-1,0)關(guān)于直線l:y=x+3的對稱點為A′(-3,2),連接A′B交直線l于點P,
則橢圓C的長軸長的最小值為|A′B|=2$\sqrt{5}$,
所以橢圓C的離心率的最大值為:$\frac{c}{a}$=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
故選:A.

點評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.我校在模塊考試中約有1000人參加考試,其數(shù)學(xué)考試成績ξ~N(90,a3)(a>0),統(tǒng)計結(jié)果顯示數(shù)學(xué)考試成績在70分到110分之間的人數(shù)約為總?cè)藬?shù)的$\frac{3}{5}$,則此次數(shù)學(xué)考試成績不低于110分的學(xué)生人數(shù)約為( 。
A.600B.400C.300D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的定義域:
(1)f(x)=(x+2)0+$\sqrt{x+5}$;            
(2)f(x)=$\sqrt{4-{x^2}}+\sqrt{{x^2}-4}+\frac{1}{{{x^2}-9}}$
(3)f(x)=$\frac{{\sqrt{x-5}}}{|x|-7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知Sn是數(shù)列{an}的前n項和,且Sn+1=Sn+an+3,a4+a5=23,則S8=( 。
A.72B.88C.92D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知x為三角形中的最小角,則函數(shù)$y=sinx+\sqrt{3}cosx+1$的值域為[$\sqrt{3}+1$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn,若4Sn=(2n-1)an+1+1,a1=1.
(1)求數(shù)列{an}的通項公式;
(2)令${b_n}=\frac{n+1}{{{{(n+2)}^2}{{({a_n}+1)}^2}}}$,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有${T_n}<\frac{5}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)全集U=R,集合A={y|y=x2-2},B={x|x≥3},則A∩(∁UB)=( 。
A.B.{x|x≤-2}C.{x|x<3}D.{x|-2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.圖中給出了奇函數(shù)f(x)的局部圖象,已知f(x)的定義域為[-5,5]

(1)求f(0);    
(2)試補全其圖象; 
(3)并比較f(1)與f(3)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.A,B兩位同學(xué)各有五張卡,現(xiàn)以投擲均勻硬幣的方式進行游戲,當(dāng)出現(xiàn)正面朝上時A贏得B一張卡片,否則B贏得A一張卡片,如果某人已贏得所有卡片,則游戲終止;
(1)求擲硬幣的次數(shù)不大于7次時游戲終止的概率.
(2)設(shè)ξ表示“游戲已進行五次時同學(xué)A擁有的卡片數(shù)”,求Eξ.

查看答案和解析>>

同步練習(xí)冊答案