【題目】如圖,在四棱錐中,底面是矩形,平面,且,,點為線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)求三棱錐的體積.
【答案】(Ⅰ)見證明;(Ⅱ)見證明;(Ⅲ)4
【解析】
(Ⅰ)連結(jié)BD,交AC于點O,連結(jié)OE.可得PB∥OE,再由線面平行的判定可得PB∥平面ACE;
(Ⅱ)由PA=AD,E為線段PD的中點,得AE⊥PD,再由PA⊥平面ABCD,得PA⊥CD,由線面垂直的判定可得AE⊥平面PCD,從而得證;
(Ⅲ)根據(jù)AE⊥平面PCD,結(jié)合三棱錐的體積公式求出其體積即可.
(Ⅰ)證明:連接,交于點,連接,
因為是矩形對角線交點,所以為中點,
又已知為線段的中點,所以,又平面
平面,所以平面;
(Ⅱ)證明:因為平面,平面,
所以,又因為底面是矩形,
所以,,平面,平面.
所以,為的中點, ,
所以,,
所以平面, .
(Ⅲ).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面半徑為,母線長為的圓柱的軸截面是四邊形,線段上的兩動點, 滿足.點在底面圓上,且, 為線段的中點.
(Ⅰ)求證: 平面;
(Ⅱ)四棱錐的體積是否為定值,若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓的離心率為,左焦點,直線與橢圓交于兩點, 為橢圓上異于的點.
(1)求橢圓的方程;
(2)若,以為直徑的圓過點,求圓的標準方程;
(3)設(shè)直線與軸分別交于,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進行調(diào)查,在高三的全體1000名學(xué)生中隨機抽取了100名學(xué)生的體檢表,得到如圖的頻率分布直方圖(圖1).
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學(xué)生進行了調(diào)查,得到圖2中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過0.05的前提下認為視力與學(xué)習(xí)成績有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標系中,利用求動點軌跡方程的方法,可以求出過點,且法向量為的直線(點法式)方程為:,化簡得.類比以上方法,在空間直角坐標系中,經(jīng)過點,且法向量為的平面的方程為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一次骰子,將得到的點數(shù)分別記為.
(1)求直線與圓相切的概率;
(2)將,4的值分別作為三條線段的長,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)數(shù)列{an}的前n項和為Sn=10n﹣n2,求數(shù)列{|an|}的前n項和.
(2)已知等差數(shù)列{an}滿足a2=0,a6+a8=﹣10.求數(shù)列{}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a>0,且a≠1,函數(shù)y=a2x+2ax-1在[-1,1]上的最大值是14,則實數(shù)a的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com