【題目】如圖,在四棱錐中,底面是矩形,平面,且,,點(diǎn)為線(xiàn)段的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求證:;

(Ⅲ)求三棱錐的體積.

【答案】(Ⅰ)見(jiàn)證明;(Ⅱ)見(jiàn)證明;(Ⅲ)4

【解析】

(Ⅰ)連結(jié)BD,交AC于點(diǎn)O,連結(jié)OE.可得PBOE,再由線(xiàn)面平行的判定可得PB∥平面ACE;

(Ⅱ)由PAADE為線(xiàn)段PD的中點(diǎn),得AEPD,再由PA⊥平面ABCD,得PACD,由線(xiàn)面垂直的判定可得AE⊥平面PCD,從而得證;

(Ⅲ)根據(jù)AE⊥平面PCD,結(jié)合三棱錐的體積公式求出其體積即可.

(Ⅰ)證明:連接,交于點(diǎn),連接,

因?yàn)?/span>是矩形對(duì)角線(xiàn)交點(diǎn),所以中點(diǎn),

又已知為線(xiàn)段的中點(diǎn),所以,又平面

平面,所以平面;

(Ⅱ)證明:因?yàn)?/span>平面,平面,

所以,又因?yàn)榈酌?/span>是矩形,

所以,,平面,平面.

所以,的中點(diǎn), ,

所以,,

所以平面, .

(Ⅲ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面半徑為,母線(xiàn)長(zhǎng)為的圓柱的軸截面是四邊形,線(xiàn)段上的兩動(dòng)點(diǎn), 滿(mǎn)足.點(diǎn)在底面圓上,且, 為線(xiàn)段的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)四棱錐的體積是否為定值,若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,左焦點(diǎn),直線(xiàn)與橢圓交于兩點(diǎn), 為橢圓上異于的點(diǎn).

1)求橢圓的方程;

2)若,以為直徑的圓過(guò)點(diǎn),求圓的標(biāo)準(zhǔn)方程;

3)設(shè)直線(xiàn)軸分別交于,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,,,底面,,點(diǎn)在棱上,且

(1)證明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體檢表,得到如圖的頻率分布直方圖(圖1.

1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在5.0以下的人數(shù);

2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)年級(jí)名次在150名和9511000名的學(xué)生進(jìn)行了調(diào)查,得到圖2中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把平面內(nèi)與直線(xiàn)垂直的非零向量稱(chēng)為直線(xiàn)的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn),且法向量為的直線(xiàn)(點(diǎn)法式)方程為:,化簡(jiǎn)得.類(lèi)比以上方法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn),且法向量為的平面的方程為(。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后2次拋擲一次骰子,將得到的點(diǎn)數(shù)分別記為

1)求直線(xiàn)與圓相切的概率;

2)將,4的值分別作為三條線(xiàn)段的長(zhǎng),求這三條線(xiàn)段能?chē)傻妊切危ê冗吶切危┑母怕剩?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)數(shù)列{an}的前n項(xiàng)和為Sn10nn2,求數(shù)列{|an|}的前n項(xiàng)和.

2)已知等差數(shù)列{an}滿(mǎn)足a20a6+a8=﹣10.求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a>0,且a≠1,函數(shù)ya2x2ax1[1,1]上的最大值是14,則實(shí)數(shù)a的值為________

查看答案和解析>>

同步練習(xí)冊(cè)答案