【題目】我們把平面內與直線垂直的非零向量稱為直線的法向量,在平面直角坐標系中,利用求動點軌跡方程的方法,可以求出過點,且法向量為的直線(點法式)方程為:,化簡得.類比以上方法,在空間直角坐標系中,經(jīng)過點,且法向量為的平面的方程為(。

A. B.

C. D.

【答案】A

【解析】

類比平面中求動點軌跡方程的方法,在空間任取一點Px,y,z),則x﹣1,y﹣2,z﹣3),利用平面法向量為(﹣1,﹣2,1),即可求得結論.

類比平面中求動點軌跡方程的方法,在空間任取一點Px,y,z),則x﹣1,y﹣2,z﹣3)

∵平面法向量為(﹣1,﹣2,1),

∴﹣(x﹣1)﹣2×(y﹣2)+1×(z﹣3)=0

x+2yz﹣2=0,

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一研究性學習小組對春季晝夜溫差大小與某大豆種子發(fā)芽多少之間的關系進行分析研究,他們分別記錄了41日至45日的每天晝夜溫差與實驗室每天每100顆種子的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

41

42

43

44

45

溫差攝氏度

8

12

13

11

10

發(fā)芽數(shù)

18

26

30

25

20

該學習組所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

1)求選取的2組數(shù)據(jù)恰好是相鄰2天的數(shù)據(jù)的概率;

2)若選取的是41日與45日這2組數(shù)據(jù)做檢驗,請根據(jù)42日至44日這3組數(shù)據(jù)求出關于的線性回歸方程

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?

參考公式和數(shù)據(jù):;,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校微信公眾號收到非常多的精彩留言,學校從眾多留言者中抽取了100人參加“學校滿意度調查”,其留言者年齡集中在之間,根據(jù)統(tǒng)計結果,做出頻率分布直方圖如下:

(1)求這100位留言者年齡的平均數(shù)和中位數(shù);

(2)學校從參加調查的年齡在的留言者中,按照分層抽樣的方法,抽出了6人參加“精彩留言”經(jīng)驗交流會,贈與年齡在的留言者每人一部價值1000元的手機,年齡在的留言者每人一套價值700元的書,現(xiàn)要從這6人中選出3人作為代表發(fā)言,求這3位發(fā)言者所得紀念品價值超過2300元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,且,,點為線段的中點.

(Ⅰ)求證:平面

(Ⅱ)求證:;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省為了確定合理的階梯電價分檔方案,對全省居民用量進行了一次抽樣調查,得到居民月用電量(單位:度)的頻率分布直方圖(如圖所示),求:

1)若要求80%的居民能按基本檔的電量收費,則基本檔的月用電量應定為多少度?

2)由頻率分布直方圖可估計,居民月用電量的眾數(shù)、中位數(shù)和平均數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)求曲線在點處的切線方程;

(2)若恒成立,求實數(shù)的取值范圍;

(3)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

在極坐標系下,已知圓O和直線

1求圓O和直線l的直角坐標方程;

2時,求直線l與圓O公共點的一個極坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求經(jīng)過點的拋物線的標準方程;

(2)求以橢圓長軸兩個端點為焦點,以該橢圓焦點為頂點的雙曲線的標準方程.

查看答案和解析>>

同步練習冊答案