【題目】某企業(yè)引進(jìn)現(xiàn)代化管理體制,生產(chǎn)效益明顯提高.2018年全年總收入與2017年全年總收入相比增長了一倍,實現(xiàn)翻番.同時該企業(yè)的各項運營成本也隨著收入的變化發(fā)生了相應(yīng)變化.下圖給出了該企業(yè)這兩年不同運營成本占全年總收入的比例,下列說法正確的是( )
A.該企業(yè)2018年原材料費用是2017年工資金額與研發(fā)費用的和
B.該企業(yè)2018年研發(fā)費用是2017年工資金額、原材料費用、其它費用三項的和
C.該企業(yè)2018年其它費用是2017年工資金額的
D.該企業(yè)2018年設(shè)備費用是2017年原材料的費用的兩倍
【答案】B
【解析】
先對折線圖信息的理解及處理,再結(jié)合數(shù)據(jù)進(jìn)行簡單的合情推理逐一檢驗即可得解.
解:由折線圖可知:不妨設(shè)2017年全年的收入為t,則2018年全年的收入為2t.
對于選項A,該企業(yè)2018年原材料費用為0.3×2t=0.6t,2017年工資金額與研發(fā)費用的和為0.2t+0.1t=0.3t,故A錯誤;
對于選項B,該企業(yè)2018年研發(fā)費用為0.25×2t=0.5t,2017年工資金額、原材料費用、其它費用三項的和為0.2t+0.15t+0.15t=0.5t,故B正確;
對于選項C,該企業(yè)2018年其它費用是0.05×2t=0.1t,2017年工資金額是0.2t,故C錯誤;
對于選項D,該企業(yè)2018年設(shè)備費用是0.2×2t=0.4t,2017年原材料的費用是0.15t,故D錯誤.
故選:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0)的焦點為F,直線l與拋物線C交于P,Q兩點.
(1)若l過點F,拋物線C在點P處的切線與在點Q處的切線交于點G.證明:點G在定直線上.
(2)若p=2,點M在曲線y上,MP,MQ的中點均在拋物線C上,求△MPQ面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電動車生產(chǎn)企業(yè),上年度生產(chǎn)電動車的投入成本為1萬元/輛,出廠價為1.2萬元/輛,年銷售量為1000輛.本年度為適應(yīng)市場需求,計劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車投入成本增加的比例為,則出廠價相應(yīng)提高的比例為,且當(dāng)不超過0.5時,預(yù)計年銷售量增加的比例為,而當(dāng)超過0.5時,預(yù)計年銷售量不變.已知年利潤=(出廠價-投入成本)×年銷售量.則本年度預(yù)計的年利潤與投入成本增加的比例的關(guān)系式為______;為使本年度利潤比上年有所增加,投入成本增加的比例的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),e為自然對數(shù)的底數(shù).
(1)求f(x)的單調(diào)區(qū)間:
(2)若ax2+x+a﹣exx+exlnx≤0成立,求正實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙M過點,且與⊙N:內(nèi)切,設(shè)⊙M的圓心M的軌跡為曲線C.
(1)求曲線C的方程:
(2)設(shè)直線l不經(jīng)過點且與曲線C相交于P,Q兩點.若直線PB與直線QB的斜率之積為,判斷直線l是否過定點,若過定點,求出此定點坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人進(jìn)行拋硬幣游戲,規(guī)定:每次拋幣后,正面向上甲贏,否則乙贏.此時,兩人正在游戲,且知甲再贏(常數(shù))次就獲勝,而乙要再贏(常數(shù))次才獲勝,其中一人獲勝游戲就結(jié)束.設(shè)再進(jìn)行次拋幣,游戲結(jié)束.
(1)若,,求概率;
(2)若,求概率的最大值(用表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com