【題目】已知⊙M過點,且與⊙N:內(nèi)切,設(shè)⊙M的圓心M的軌跡為曲線C.
(1)求曲線C的方程:
(2)設(shè)直線l不經(jīng)過點且與曲線C相交于P,Q兩點.若直線PB與直線QB的斜率之積為,判斷直線l是否過定點,若過定點,求出此定點坐標(biāo);若不過定點,請說明理由.
【答案】(1);(2)存在,直線l過定點
【解析】
(1)由兩圓相內(nèi)切的條件和橢圓的定義,可得曲線C的軌跡方程;
(2)設(shè)直線BP的斜率為,則BP的方程為,聯(lián)立橢圓方程,解得交點P,同理可得Q的坐標(biāo),考慮P,Q的關(guān)系,運用對稱性可得定點.
解:(1)設(shè)⊙M的半徑為R,因為圓M過,且與圓N相切
所以,即,
由,所以M的軌跡為以N,A為焦點的橢圓.
設(shè)橢圓的方程為1(a>b>0),則2a=4,且c,
所以a=2,b=1,所以曲線C的方程為y2=1;
(2)由題意可得直線BP,BQ的斜率均存在且不為0,
設(shè)直線BP的斜率為,則BP的方程為y=kx+1,聯(lián)立橢圓方程,
可得,解得
則,
因為直線BQ的斜率為,
所以同理可得,
因為P,Q關(guān)于原點對稱,(或求得直線l的方程為)
所以直線l過定點
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,且.
(1)過作截面與線段交于點H,使得平面,試確定點H的位置,并給出證明;
(2)在(1)的條件下,若二面角的大小為,試求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),,其前項和為,且當(dāng)時,、、構(gòu)成等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,數(shù)列的前項和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)引進現(xiàn)代化管理體制,生產(chǎn)效益明顯提高.2018年全年總收入與2017年全年總收入相比增長了一倍,實現(xiàn)翻番.同時該企業(yè)的各項運營成本也隨著收入的變化發(fā)生了相應(yīng)變化.下圖給出了該企業(yè)這兩年不同運營成本占全年總收入的比例,下列說法正確的是( )
A.該企業(yè)2018年原材料費用是2017年工資金額與研發(fā)費用的和
B.該企業(yè)2018年研發(fā)費用是2017年工資金額、原材料費用、其它費用三項的和
C.該企業(yè)2018年其它費用是2017年工資金額的
D.該企業(yè)2018年設(shè)備費用是2017年原材料的費用的兩倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|x+b|,ab>0.
(1)當(dāng)a=1,b=1時,求不等式f(x)<3的解集;
(2)若f(x)的最小值為2,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年是我國全面建成小康社會和“十三五”規(guī)劃收官之年,也是佛山在經(jīng)濟總量超萬億元新起點上開啟發(fā)展新征程的重要歷史節(jié)點.作為制造業(yè)城市,佛山一直堅持把創(chuàng)新擺在制造業(yè)發(fā)展全局的前置位置和核心位置,聚焦打造成為面向全球的國家制造業(yè)創(chuàng)新中心,走“世界科技+佛山智造+全球市場”的創(chuàng)新發(fā)展之路.在推動制造業(yè)高質(zhì)量發(fā)展的大環(huán)境下,佛山市某工廠統(tǒng)籌各類資源,進行了積極的改革探索.下表是該工廠每月生產(chǎn)的一種核心產(chǎn)品的產(chǎn)量(件)與相應(yīng)的生產(chǎn)總成本(萬元)的四組對照數(shù)據(jù).
5 | 7 | 9 | 11 | |
200 | 298 | 431 | 609 |
工廠研究人員建立了與的兩種回歸模型,利用計算機算得近似結(jié)果如下:
模型①:;
模型②:.
其中模型①的殘差(實際值預(yù)報值)圖如圖所示:
(1)根據(jù)殘差分析,判斷哪一個更適宜作為關(guān)于的回歸方程?并說明理由;
(2)市場前景風(fēng)云變幻,研究人員統(tǒng)計了20個月的產(chǎn)品銷售單價,得到頻數(shù)分布表如下:
銷售單價分組(萬元) | |||
頻數(shù) | 10 | 6 | 4 |
若以這20個月銷售單價的平均值定為今后的銷售單價(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),結(jié)合你對(1)的判斷,當(dāng)月產(chǎn)量為12件時,預(yù)測當(dāng)月的利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術(shù)及先進的數(shù)學(xué)水平,也印證了我國古代音律與歷法的密切聯(lián)系.圖2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計),夏至(或冬至)日光(當(dāng)日正午太陽光線)與春秋分日光(當(dāng)日正午太陽光線)的夾角等于黃赤交角.
由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應(yīng)的年代如下表:
黃赤交角 | |||||
正切值 | 0.439 | 0.444 | 0.450 | 0.455 | 0.461 |
年代 | 公元元年 | 公元前2000年 | 公元前4000年 | 公元前6000年 | 公元前8000年 |
根據(jù)以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是( )
A.公元前2000年到公元元年B.公元前4000年到公元前2000年
C.公元前6000年到公元前4000年D.早于公元前6000年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為等差數(shù)列,且,
(Ⅰ)求數(shù)列的通項,及前項和
(Ⅱ)請你在數(shù)列的前4項中選出三項,組成公比的絕對值小于1的等比數(shù)列的前3項,并記數(shù)列的前n項和為.若對任意正整數(shù),不等式恒成立,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)若存在極值點1,求的值;
(2)若存在兩個不同的零點,求證: (為自然對數(shù)的底數(shù), ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com