【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若對于任意,都有,求的取值范圍.
【答案】(1)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是 (2)
【解析】
(1)對函數(shù)求導(dǎo),由導(dǎo)函數(shù)的正負(fù)得到原函數(shù)的單調(diào)區(qū)間;
(2)由第一問確定出函數(shù)在給定區(qū)間上的單調(diào)性,之后將任意的,恒成立轉(zhuǎn)化為 ,即,
再構(gòu)造新函數(shù),求導(dǎo)得到其單調(diào)性,結(jié)合其性質(zhì),求得最后的結(jié)果.
(1)因為,所以,
所以當(dāng)時,;
當(dāng)時,.
所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.
(2)由(1)知,在上單調(diào)遞減,在上單調(diào)遞增,
故在處取得最小值,且.
所以對于任意的,的充要條件為
,即 ①
設(shè)函數(shù),則.
當(dāng)時,;當(dāng)時,,
故在上單調(diào)遞減,在上單調(diào)遞增.
又,,,
所以當(dāng)時,,即①式成立,
綜上所述,的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中,為個互不相同的有限集合,滿足對任意、,均有.若(表示有限集合的元素個數(shù)),證明:存在,使得屬于中的至少個集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來。某市為了解全民健身情況,隨機(jī)從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。
(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計值;
(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計該小區(qū)年齡不超過80歲的成年人人數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動力和煤、電耗如下表:
產(chǎn)品品種 | 勞動力 | 煤噸 | 電千瓦 |
A產(chǎn)品 | 3 | 9 | 4 |
B產(chǎn)品 | 10 | 4 | 5 |
已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)在條件有限,該企業(yè)僅有勞動力300個,煤360噸,并且供電局只能供電200千瓦,試問:該企業(yè)生產(chǎn)A、B兩種產(chǎn)品各多少噸,才能獲得最大利潤?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動力和煤、電耗如下表:
產(chǎn)品品種 | 勞動力 | 煤噸 | 電千瓦 |
A產(chǎn)品 | 3 | 9 | 4 |
B產(chǎn)品 | 10 | 4 | 5 |
已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)在條件有限,該企業(yè)僅有勞動力300個,煤360噸,并且供電局只能供電200千瓦,試問:該企業(yè)生產(chǎn)A、B兩種產(chǎn)品各多少噸,才能獲得最大利潤?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在區(qū)間上的最大值和最小值之和為6,求實數(shù)的值;
(2)設(shè)函數(shù),若函數(shù)在區(qū)間上恒有零點,求實數(shù)的取值范圍;
(3)在問題(2)中,令,比較與0的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),曲線在點處的切線方程為.
(1)求實數(shù)的值,并求的單調(diào)區(qū)間;
(2)試比較與的大小,并說明理由;
(3)求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com