【題目】已知點(diǎn)A(1,2),過點(diǎn)P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點(diǎn),則△ABC是(
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定

【答案】A
【解析】解:當(dāng)BC斜率不存在時(shí),方程為x=5, 代入拋物線方程y2=4x得
B ,C
所以AB斜率是
AC斜率是
所以kABkAC=﹣1,
所以AB與AC垂直,
所以三角形ABC是直角三角形當(dāng)BC斜率存在時(shí),顯然不能為0,否則與拋物線只有一個(gè)公共點(diǎn),
所以設(shè)方程為x﹣5=a(y+2)(a是斜率的倒數(shù)),
代入拋物線方程化簡得y2﹣4ay﹣8a﹣20=0 設(shè)B(x1 , y1),C(x2 , y2),
則y1+y2=4a,y1y2=﹣8a﹣20 x1+x2=(ay1+2a+5)+(ay2+2a+5)=a(y1+y2)+4a+10=4a2+4a+10 x1x2=(ay1+2a+5)(ay2+2a+5)=4a2+20a+25
因?yàn)椋▂1﹣2)(y2﹣2)=y1y2﹣2(y1+y2)+4=﹣16a﹣16 (x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1=16a+16 所以AB和AC斜率乘積等于﹣1,
即AB垂直于AC.綜上可知,三角形ABC是直角三角形
故選A.
先討論直線BC斜率不存在時(shí),求出B,C的坐標(biāo),求出AB、AC斜率,求出kABkAC=﹣1,得到三角形ABC是直角三角形,當(dāng)BC斜率存在時(shí)設(shè)出其方程,聯(lián)立BC的方程與拋物線的方程,利用韋達(dá)定理,表示出AB、AC斜率,求出kABkAC=﹣1,得到三角形ABC是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)上存在兩個(gè)極值點(diǎn),,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若上恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若數(shù)列的前項(xiàng)和, ,求證:數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象大致為(  )

A. B.

C. D.

【答案】C

【解析】

由函數(shù)的解析式 ,當(dāng)時(shí),是函數(shù)的一個(gè)零點(diǎn),屬于排除A,B,

當(dāng)x∈(0,1)時(shí),cosx>0,,函數(shù)f(x) <0,函數(shù)的圖象在x軸下方,排除D.

本題選擇C選項(xiàng).

點(diǎn)睛:函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.利用上述方法排除、篩選選項(xiàng).

型】單選題
結(jié)束】
12

【題目】設(shè),則的最小值是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬元.

若學(xué)生宿舍建筑為x層樓時(shí),該樓房綜合費(fèi)用為y萬元,綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和,寫出的表達(dá)式;

為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)校總務(wù)辦公室用1000萬元從政府購得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高0.02萬元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為0.8萬元.

(1)若學(xué)生宿舍建筑為層樓時(shí),該樓房綜合費(fèi)用為萬元,綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),寫出的表達(dá)式;

(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬元?

【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時(shí)平均綜合費(fèi)用為每平方米萬元

【解析】

由已知求出第層樓房每平方米建筑費(fèi)用為萬元,得到第層樓房建筑費(fèi)用,由樓房每升高一層,整層樓建筑費(fèi)用提高萬元,然后利用等差數(shù)列前項(xiàng)和求建筑層樓時(shí)的綜合費(fèi)用

設(shè)樓房每平方米的平均綜合費(fèi)用為,則,然后利用基本不等式求最值.

解:由建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬元,

且樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬元,

可得建筑第1層樓房每平方米建筑費(fèi)用為:萬元.

建筑第1層樓房建筑費(fèi)用為:萬元

樓房每升高一層,整層樓建筑費(fèi)用提高:萬元

建筑第x層樓時(shí),該樓房綜合費(fèi)用為:

;

設(shè)該樓房每平方米的平均綜合費(fèi)用為

則:,

當(dāng)且僅當(dāng),即時(shí),上式等號成立.

學(xué)校應(yīng)把樓層建成10層,此時(shí)平均綜合費(fèi)用為每平方米萬元.

【點(diǎn)睛】

本題考查簡單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項(xiàng)和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.

型】解答
結(jié)束】
20

【題目】已知

(1)求函數(shù)的最小正周期和對稱軸方程;

(2)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大。
(Ⅱ)若a=2,c=3,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若執(zhí)行如圖的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是( )

A.k<14?
B.k<15?
C.k<16?
D.k<17?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________

查看答案和解析>>

同步練習(xí)冊答案