【題目】已知橢圓的離心率,且經過點,,,為橢圓的四個頂點(如圖),直線過右頂點且垂直于軸.

(1)求該橢圓的標準方程;

(2)上一點(軸上方),直線,分別交橢圓于兩點,若,求點的坐標.

【答案】(1)(2)

【解析】

1)利用橢圓的離心率和經過的點,列方程組求解即可.(2)設P2m),m0,得直線PC方程與橢圓聯(lián)立,利用韋達定理,推出E的坐標, 同理F點橫坐標,由SPCD2SPEF,轉化求解即可.

(1)因的離心率,且經過點,

所以

解得,.所以橢圓標準方程為

(2)由(1)知橢圓方程為,所以直線方程為,

,,則直線的方程為

聯(lián)立方程組,

所以點的橫坐標為

又直線的方程為

聯(lián)立方程組,

所以點的橫坐標為

,

則有,則,

化簡得,解得,因為,所以

所以點的坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,則下列結論正確的是 ( )

A. 向左平移個單位長度,得到的曲線關于原點對稱

B. 向右平移個單位長度,得到的曲線關于軸對稱

C. 向左平移個單位長度,得到的曲線關于原點對稱

D. 向右平移個單位長度,得到的曲線關于軸對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)為偶函數(shù),求實數(shù)的值;

2)若,求函數(shù)的單調遞減區(qū)間;

3)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)圖象如圖,的導函數(shù),則下列數(shù)值排序正確的是( )

A.

B.

C.

D.

【答案】C

【解析】結合函數(shù)的圖像可知過點的切線的傾斜角最大,過點的切線的傾斜角最小,又因為點的切線的斜率,點的切線斜率,直線的斜率,故,應選答案C

點睛:本題旨在考查導數(shù)的幾何意義與函數(shù)的單調性等基礎知識的綜合運用。求解時充分借助題設中所提供的函數(shù)圖形的直觀,數(shù)形結合進行解答。先將經過兩切點的直線繞點逆時針旋轉到與函數(shù)的圖像相切,再將經過兩切點的直線繞點順時針旋轉到與函數(shù)的圖像相切,這個過程很容易發(fā)現(xiàn),從而將問題化為直觀圖形的問題來求解。

型】單選題
束】
9

【題目】已知、為雙曲線的左、右焦點,點上,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其中.

(Ⅰ)討論的單調性;

(Ⅱ)若存在使得,求實數(shù)的取值范圍;

(Ⅲ)若當時恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x.

(1)判斷函數(shù)的奇偶性,并證明;

(2)用單調性的定義證明函數(shù)f(x)=2x在(0,+∞)上單調遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:4x-3y+6=0和直線l2x=-.若拋物線Cy2=2px(p>0)上的點到直線l1和直線l2的距離之和的最小值為2.

(1)求拋物線C的方程;

(2)若以拋物線上任意一點M為切點的直線l與直線l2交于點N,試問在x軸上是否存在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校團委組織了文明出行,愛我中華的知識競賽,從參加考試的學生中抽出60名學生,將其成績(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為,,.

1)求成績在的頻率,并補全此頻率分布直方圖;

2)求這次考試平均分的估計值;

3)若從成績在的學生中任選兩人,求他們的成績在同一分組區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域是R上的奇函數(shù)

1)求a;

2)判斷R上的單調性,并用定義法證明;

3)若對任意的,不等式恒成立,求實數(shù)k的取值范圍;

4)設關于x方程有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案