【題目】已知函數(shù) ,其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若存在使得,求實(shí)數(shù)的取值范圍;

(Ⅲ)若當(dāng)時(shí)恒有,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)見(jiàn)解析.(Ⅱ).(Ⅲ).

【解析】試題分析:(Ⅰ)求得函數(shù)的導(dǎo)數(shù),得到的根,分類(lèi)討論,即可求解函數(shù)的單調(diào)區(qū)間;

(Ⅱ)令,轉(zhuǎn)化為上有解,即上有解,又由關(guān)于單調(diào)遞增,求得實(shí)數(shù)的取值范圍;

(Ⅲ)由題意,得到,取得,得得,由(Ⅱ)知,分類(lèi)討論即可求解實(shí)數(shù)的取值范圍.

試題解析:

(Ⅰ) .

.

當(dāng)時(shí),,上單調(diào)遞增;

當(dāng)時(shí),令,從而上單調(diào)遞增,在上單調(diào)遞減.

(Ⅱ) ,令,

,當(dāng)且僅當(dāng)取得等號(hào).

注意到 ,

原問(wèn)題轉(zhuǎn)化為上有解,即上有解,又關(guān)于單調(diào)遞增,從而

,綜合得.

(Ⅲ)令

,

,由(Ⅱ)知.

當(dāng),即時(shí),,又,從而當(dāng)時(shí)恒有,

當(dāng)時(shí),存在使得,即,即

解得,,(舍去).

從而當(dāng)時(shí),此時(shí),矛盾.

綜上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)(點(diǎn)均在第一象限),軸,軸分別交于兩點(diǎn),且滿足(其中為坐標(biāo)原點(diǎn)).證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A{x|x22x30},B{x|x22mxm240xR,mR}

(1)AB[0,3],求實(shí)數(shù)m的值;

(2)ARB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的通項(xiàng)公式是表示不超過(guò)實(shí)數(shù)的最大整數(shù)).

(1)證明:、、、、都是數(shù)列的項(xiàng);

(2)是否是數(shù)列的項(xiàng),證明你的結(jié)論;

(3)證明:有無(wú)窮多個(gè)2的正整數(shù)冪是數(shù)列的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種候鳥(niǎo)每年都按一定的路線遷徙,飛往繁殖地產(chǎn)卵,科學(xué)家經(jīng)過(guò)測(cè)量發(fā)現(xiàn)候鳥(niǎo)的飛行速度可以表示為函數(shù),單位是,其中表示候鳥(niǎo)每分鐘耗氧量的單位數(shù),為表示測(cè)量過(guò)程中候鳥(niǎo)每分鐘的耗氧偏差.(參考數(shù)據(jù):,,

1)若,候鳥(niǎo)停下休息時(shí),它每分鐘的耗氧量為多少個(gè)單位?

2)若雄鳥(niǎo)的飛行速度為,雌鳥(niǎo)的飛行速度為,那么此時(shí)雄鳥(niǎo)每分鐘的耗氧量是雌鳥(niǎo)每分鐘耗氧量的多少倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過(guò)點(diǎn),,為橢圓的四個(gè)頂點(diǎn)(如圖),直線過(guò)右頂點(diǎn)且垂直于軸.

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)上一點(diǎn)(軸上方),直線分別交橢圓于,兩點(diǎn),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)若對(duì)任意的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若,的最大值是,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)設(shè),若,均,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且為自然對(duì)數(shù)的底數(shù))

1)判斷函數(shù)的單調(diào)性并證明;

2)判斷函數(shù)的奇偶性并證明;

3)是否存在實(shí)數(shù),使不等式對(duì)一切都成立?若存在,求出的范圍,若不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案